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Abstract  

 
In pattern recognition, there is a trade-off between the 
complexity of the feature extraction and the classification 
steps.  The closer the feature extraction methodology can 
bring the feature vector to match the model, the easier it is 
to properly classify it.   In the domain of image processing, 
the feature vector may take the form of a chain code.   
Chain codes are useful to reduce the dimensionality of 
shape representations.   Chain codes are invariant to 
translation, but not to rotation or scale.  One of the 
challenges of classifying a chain code is the many 
variations of transformations required to fit the model of 
the image.  This paper presents a genetic algorithm that 
evolves an optimal transformation for the chain code of a 
shape that has been transformed in a prescribed way. 
  
1.  Introduction 
 
 Feature extraction is an important step in pattern 
recognition.  Its purpose is to obtain an effective 
representation of an object from the raw data for input into 
a classifier.  The following section will provide a context 
for where feature extraction lies within the field of pattern 
recognition, with a focus on image processing.  
 Pattern recognition can be separated into the following 
components: sensing, segmentation, feature extraction, 
classification, and post-processing [3]. In the context of 
visual pattern recognition, segmentation narrows the range 
of interest to a partition of the image.  Feature extraction 
constructs a representation of the characteristics of that 
partition that can be analyzed for classification.  Depending 
on the object to be classified, the features must be invariant 
to transformations such as size and rotation.   Classification 
then uses that representation, or feature vector, to 
categorize the object.     
 There is a trade-off between feature extraction and 
classification.  A perfect feature extractor would render the 
classification task trivial, whereas an omnipotent classifier 
would need no feature extractor [3]. However, the 
dimensionality of the data in an image makes the 
omnipotent classifier far from attainable.  The performance 

of many classifiers is a function of the dimension of the 
dataset.  In other classifiers, a high dimension causes an 
overfitting of the model that can result in misclassifications 
[3]. 
 There are two major categories for reducing dimension, 
feature selection and feature transformation.   Feature 
selection keeps a subset of features needed for 
classification, whereas feature transformation constructs 
new features out of the original ones.   One of the common 
ways to perform feature selection from an image is to 
obtain the edges using an edge extraction algorithm.  The 
edges may be further manipulated to find a promising 
subset of edges.    
 Feature transformation can further reduce the 
dimensionality by representing the edges in a more 
compact form.  For example, a matrix of pixels can be 
converted into a list of line segments and angles.  A line 
drawing can be converted into a sequence of chain codes.  
Further transformations may be applied to normalize the 
data by operations such as rotation and translation.  The 
closer the feature extraction methodology can bring the 
feature vector to match the model, the easier it is for the 
classifier to correctly identify the object.    
 There are a number of variations on the preceding steps 
in the literature.  A classifier may have a pixel map as 
input.  Transforms can be performed on pixel maps as well 
as on more abstract representations [4].   Feature vectors 
may be represented in a form that is invariant to transforms 
[12].  The region of interest can be identified before edges 
are extracted [8]. Although the optimal methodology is still 
being sought, it is clear that reducing the dimensionality 
and representing the image in a form that can be matched to 
a model is a highly desirable goal which is still an area of 
much research.    
 One of the difficulties in generating the optimum feature 
vector for classification lies in the many combinations of 
transformations that may be required to fit the model of the 
image.   A genetic algorithm (GA) is able to do a parallel 
search guided by a fitness function that measures the 
similarity between the features of the image and the 
features of the model.  The problem with using a GA is that 
they are sensitive to parameters such as population size, 
crossover and mutation probabilities [9]. General guidelines 



for GA parameters have been proposed in the literature [6] 
[2].  Several researchers have performed research on how to 
further optimize details of the GA, such as population size 
[7], crossover techniques [2], and selection methods [5]. 
 In this paper, the application of genetic algorithms to 
feature extraction transformations is examined.   The 
feature vector is in the form of a chain code.  The genetic 
algorithm evolves transformations of rotation and scaling 
independently in the horizontal and vertical dimensions.   
The optimization of the GA parameters that are critical to 
the success of a GA in this domain is explored by 
comparing commonly used guidelines with more optimized 
approaches suggested in the literature. 
 
2. The Chain Code Transformation 
Problem 
 
A chain code is a sequence of directions that follows the 
outline of a shape.   A code is assigned to each of the 
possible directions.  In the following example, 2 indicates 
up, 0 indicates right, and so on.  For example, the odd 
shape chain code for Figure 2 starting on the lower left 
corner is 221221076676655433.    
 

                   
Figure 1: Chain code directions  Figure 2. Odd shape   
 
 It is clear that such a chain code is invariant to 
translation.   But in the context of shape matching, small 
changes in orientation and scaling can cause large changes 
in the chain code.   A simple 90 degree rotation results in a 
chain code of 211007007654454433 which is not similar to 
the original chain code.  
 Figure 3 illustrates the problem underlying 
transformations of chain codes. Both shapes are scaled up 
100% in the horizontal direction, using slightly different 
algorithms for whether to insert horizontal edges before or 
after sloping edges. The effect of unguided decision making 
is exaggerated when the length of the chain code is small.   
 

               
 

Figure 3:  Horizontal Scaling of Odd Shape 
 
 

 

3. Chain Code Matching Techniques 
 
 To avoid the problem of chain code transformations, a 
variety of methods have been developed for shape 
matching with the chain code representation. 
 Researchers [1] developed a similarity measure using a 
histogram of the number of each direction in a chain code.  
For example, the chain code 2120766543 has one 0, one 1, 
two 2’s, one 3, one 4, one 5, two 6’s, and one 7.  It’s 
histogram would therefore be 11211121.   Differences in 
scale were addressed by dividing the histogram by the 
length of the chain code, with the assumption that the 
length of the chain codes changes proportionately to the 
scaling.  The problem illustrated in Figure 3 shows this 
assumption has limitations due to the discrete or step nature 
of chain codes when the grid size is constant.  Rotation was 
compensated for by sorting the histograms.  For the shape 
in Figure 2, the histogram of 221221076676655433 is 
12421242, while its rotated chain code of 
211007007654454433 has a histogram of 42124212.  The 
histograms are matches when sorted.  The histogram is not 
unique to these figures and cannot be used to identify a 
match, but is useful in identifying possible matches. 
 In other research [10], a technique for normalizing a 
chain code was developed.  To account for rotation and 
scaling, they determine the bounding box and find the 
greatest length of each of the two chain codes.  They 
reorient and resize one of the boxes to match the other, and 
recalculate its chain code.  The shape is rotated 180 degrees 
in the horizontal and vertical directions to get a total of 4 
variations possible with this technique.  The researchers 
noted that chain codes are difficult to compare.  They 
developed a similarity measure based on the grid cells 
covered by the shapes.    
 
3. Genetic Algorithm  
 
 A genetic algorithm uses the principal of natural 
selection to evolve the fitness of a population under the 
given environmental pressures.  The algorithm starts with a 
population of random solutions.  The best solutions mate 
and recombine to form new solutions that become part of 
the population.  The basic algorithm follows: 
 
initialize the population 
calculate the fitness of each individual 
while ( (solution not found) and (number of runs < max)) 
{ 
 select parents 
 crossover pairs of parents to form children 
 mutate the children 
 calculate the fitness of the children 
 select individuals to form next generation 
} 
 



 There are no strong conclusions on when a genetic 
algorithm will outperform traditional methods [11].   If the 
search space is large or not understood, or if the fitness 
function is noisy, and if a global optimum is not required, 
GAs can be effective.  Their performance is highly 
dependent on the details of the algorithm. 
   Two components unique to each problem that are 
critical to the success of a genetic algorithm are genotype 
(chromosome representation) and the fitness function used 
to guide the evolution of the population of potential 
solutions.    
 Other GA parameters have guidelines backed by 
research, but are also highly dependent on the specific 
problem.  These include selection, crossover, mutation, and 
population size.  More often, researchers use guidelines and 
tweak the parameters until the results are good enough, and 
this is reflected in the literature.  Often in papers that 
emphasize the use of a GA, it is clear upon reading the 
research that the GA is perceived as a means to the end, and 
not the focus of the research.  This makes it difficult to 
determine optimum GA settings.  For example, researchers 
have independently found the best mutation rate to be .01 
and .005-.01 [6][14].  However, it is quite common to find 
rates up to 30% in the literature.   
 Another issue is the interdependence of the GA 
parameters.  Population size, crossover rate, and mutation 
rate cannot be optimized independently.  The prospect of 
varying 3 parameters to find the optimal combination 
makes the analysis more complicated. 
 
4. Shape Matching GA’s 
 
 The shape matching problem has been defined as falling 
into the following four categories:  searching a database for 
a similar shape; determining whether a given shape 
matches a model or class closely enough; constructing a 
shape of fewer elements that maintains the salient features 
of the model; and transforming a shape to minimize the 
dissimilarity between it and the model [14].   In a genetic 
algorithm, the similarity measure becomes the fitness 
function that guides the evolution of the population. 
 The fitness function is critical to the success of a genetic 
algorithm.   For chain codes, the Hamming Distance 
between two chain codes would be considered a deceptive 
measure for a GA since a small change in rotation or 
scaling often results in a large change in the chain code.    
 In a GA used to evolve transformations on shapes 
represented by the x-y coordinates, the Hausdorff distance 
was used as a fitness measure [4].   This measure works 
well since it accurately reflects the degree of rotation or 
scaling based on point location.  Its use cannot be extended 
to chain codes since the distance does not correlate with the 
changes in a chain code caused by scaling or rotation.  
 The histogram method [1] works well for chain codes.  
An unsorted histogram was used as the fitness function for 
the chain code GA. 

 Another decision unique to the shape matching domain 
is the genotype.  The genotype is the set of genes in a 
chromosome, which result in the phenotype, or 
characteristics of the individual.   The chromosome in a 
genetic algorithm is a potential solution.  The genes are the 
set of transformations that comprise that solution.  The 
phenotype is the resulting chain code after the chromosome 
has been applied to the input shape.  
 In another GA that was developed to evolve 
transformations [4], the genotype consisted of a number of 
bits for the x-translation, y-translation, x-scale, y-scale, and 
rotation.   These bits represented number of pixels, except 
for rotation which was in degrees.   It gave rise to a 
phenotype of a pixel map of the image. 
 The genotype chosen for this research is comprised of 
genes in the form of floats for x-scale, y-scale, and rotation.  
The scaling alleles represent percentage of increase or 
decrease in size, while the rotation allele represents 
degrees.  The goal of the GA is to evolve a set of genes that 
when applied to the input chain code creates the phenotype 
of a chain code matching the original model.    
 
5. Transforming Chain Codes 
 
 At the heart of the chain code GA is a new algorithm for 
transforming chain codes.  As illustrated in Figure 3, 
scaling scenarios can have different options which are 
equally valid.   With a GA, it isn’t necessary to choose one 
option over another.  Instead, we randomly choose one of 
the valid options.   Over the course of many generations, 
the best option will appear and be chosen for mating, as it 
will appear more fit than its counterparts as measured by 
the fitness function. 
 The size of the object can be increased or decreased 
independently in the horizontal and vertical dimensions.   
In this preliminary research, the granularity of the scaling is 
restricted to factors of two.  In each generation, the size of 
the dimension being scaled will either double, halve, or stay 
the same.  It is anticipated that further work will enable the 
generalization of the scaling factor.    
 
A high-level description of the scaling algorithm follows: 
 
For each direction in a chain code, perform one of the 
following actions based on the values of the horizontal and 
vertical scaling parameters: 
      Keep this direction 
      Keep this direction and duplicate it as next direction 
      Keep this direction and add a new direction as next. 
      Add a new direction and keep this direction as next. 
      Skip this direction and keep the next direction. 
      Keep this direction and skip the next direction   
 
 Rotation is implemented as a step function, at 22.5 
degree intervals.  This is equivalent to eight intervals 
around a 360 circle.  An allele of 80 falls closest to the 90 



degree interval and each chain code is modified to reflect 
two steps around the circle.  For the chain code of 217644, 
a 90 degree rotation becomes 075422.     
 
 

        
 

Figure 4:  Rotation of Hut Shape Chain Code 
 
 
6. The Chain Code Evolution GA 
 
 The research can be described as follows: given the 
chain code of a polygonal shape that has been modified in a 
prescribed way, evolve the transformations that most 
closely matches the original model.    Vary one of the GA 
components and analyze the difference in performance.  
Repeat for each of the following components: fitness 
function, selection method, crossover method, mutation 
rate, and population size.   
  
Genotype 
 The encoding of the chromosomes, or genotype, is one 
of the most important factors in the success of a genetic 
algorithm [11].    The genotype used is a list of chain codes.  
The transformations that were considered are rotation and 
scale.  The chromosome is comprised of three genes, each 
of which is a four-byte float variable.   
 
Fitness Function 
 The fitness function used is an unsorted histogram of 
chain code directions since it is fast and effective.  This is 
compared with the Hamming distance function.  
 
Selection Methods 
 The ideal selection method has been described [5] as one 
that balances exploitation and exploration.  Converging too 
quickly can lose building blocks through spurious linkage 
or bad luck.  One of the ways to obtain correct convergence 
is to slow the growth rate down, particularly in the 
beginning of the evolutionary cycle, and then allowing it to 
speed up to reduce the time complexity.  
 The ranking selection method was used to choose the 
mating population in the chain code GA.  The fitness of 
each chromosome is calculated, and parents are selected at 
random from the top 20% of the population.  The top 20% 
are carried into the next generation without modification 
(elitism), so that 80% of the population is replaced with 
modified chromosomes in each generation.  This prevents 
the population from converging too quickly and losing 

genetic diversity.  Ranking keeps the selection pressure low 
when the fitness variance is high, and vice versa [11].   
 Ranking will be compared with fitness-proportional 
selection.  Holland’s original GA used this selection 
method, also known as roulette wheel, and it remains a 
commonly employed selection method in the current 
literature.  In the roulette wheel method, individuals are 
assigned a slice of a roulette wheel proportional to their 
fitness.  When the wheel is spun, the individual assigned to 
the slice the wheel lands on is chosen to be a parent.  
Elitism is again used to prevent highly fit individuals from 
being lost to crossover and mutation. 
 
Crossover 
 The ideal number of crossover points is that which 
balances the pressure between exploitation and exploration.   
The higher number of crossover points cause more 
disruption and are important in the initial exploration of the 
search space.  Later in the evolutionary cycle, a lower 
number of crossover points are more beneficial to exploit 
the current observations [2].  A reduced number of 
crossover points prevent the disruption of schemas with co-
adapted alleles from forming.    
 Single point crossover was used in the chain code GA, 
where a single locus is chosen at random for the crossover 
point.  The crossover rate will be .6 based on existing 
research [2].  This crossover rate will be compared with 
rates of .3 and .8. 
  
Mutation 
 Mutation is intended to preserve genetic diversity 
against losing desired alleles during the course of the 
evolution.  It is a powerful disruptor of schemas.  The chain 
code GA uses a very low probability of .001, based on 
existing guidelines [2].   This will be contrasted with a 
higher probability of .01, also based on existing research 
[6]. 
 
Population size 
 The population must be sized so that an adequate 
number of building blocks exist to evolve into the desired 
schema.  If a population is too small, a GA will not find a 
solution to the problem [7]. If it is too large, time is wasted 
processing unnecessary individuals and may be 
unacceptably slow.   Population size is dependent on the 
number of genes and the quality of the fitness function [7].  
Moreover, it interacts nonlinearly with crossover and 
mutation probabilities [11].   Population sizes of 50-100 are 
commonly used, based on published guidelines [2].   The 
proposed research will use a population size of 100.   It will 
be compared with a population size of 200 and 30, the latter 
being based on results in [6].    
 
 
 
 



 
7. Results 
 
 The following four chain codes were used in the 
experiment: a 6-sided hut, an 8-sided octagon, an airplane 
with 99 edges, and an odd shape with 18-edges. 
 

          
 

Figure 5: Chain Codes Used In Experiment 
 
 Eight tests were run with different GA parameters.  Each 
test was run 12 times, 3 times for each chain code.  
 The transformations applied to the input start shape were 
held constant to eliminate the random effects that result 
because some transformations are not handled as well as 
others.  For example, the transformation algorithm does not 
yet handle uneven scaling and rotation with 100% 
accuracy.  Figure 6 shows an example of the odd shape 
chain code scaled up in the vertical direction and rotated 45 
degrees, along with the two best attempts to reverse the 
scaling and rotation.  The resulting fitness values of 3 and 2 
are a weakness of the transformation algorithm rather than 
a failure of the GA.  In cases where scaling was even in 
both dimensions, or where rotation did not occur, the 
transformation algorithm is able to reverse the 
transformation 100% of the time.  .   

   
 

Figure 6: Uneven Scaling and Rotation of Odd Shape 
 

 The first start shape used in the experiments was scaled 
evenly in both directions and rotated 90 degrees.  The 
second start shape was scaled in the horizontal direction 
and rotated 23 degrees.  The third start shape was scaled in 
the vertical direction and rotated 45 degrees.   
 The results that are reported show the highest fitness 
value that was evolved and which run it occurred in.  The 
best fitness value possible is 0, indicating no differences 
exist between the evolved chain code and the original 
model. 
 Test 1 is defined as the standard model.  It is used as a 
basis of comparison with the remaining tests, which vary 
one component of the GA. 
 
Test 1: Standard Model 
 This version of the GA converges quickly.  Typically, 
the best solution is found in the first run, and the population 

is comprised of 100% of the highest fit individuals by the 
fourth run.   This likely reflects the fact that the initial 
population contains individuals with a high fitness value.  
Since the algorithm considers five ranges of values for the 
scaling parameters, and eight ranges for the rotation 
parameter, there is a total of 200 variations of the 
chromosome.  The initial population contains 100 random 
variations.   The crossover function is quickly able to find 
the ideal chromosome with such a rich selection of building 
blocks. 
 

Test 1 Configuration : Standard Model 
 Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.60 
Mutation 0.001 
Population Size 100 

Test 1 Results 
Shape Best 

Fitness 
Evolved 

Run Number Best 
Fitness Occurred 

Hut - first start shape 0 1 
    second start shape 0 1 
    third start shape 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 1 
 18 2 
Odd Shape 0 1 
 2 1 
 3 2 
 
Test 2: Roulette Selection Method 
 
 This version of the GA used a roulette selection method.  
Results were not significantly different from the standard 
GA using the ranking method. 
 

Test 2 Configuration: Roulette Selection 
Fitness Function Histogram 
Selection Method Roulette 
Crossover 0.60 
Mutation 0.001 
Population Size 100 

Test 2 Results: 
Shape Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 2 
 0 1 



 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 2 
 9 1 
 18 1 
Odd Shape 0 1 
 2 1 
 3 1 
 
Test 3: Hamming Fitness Function 
 
 This version of the GA used a deceptive fitness function, 
and was typically not able to evolve better solutions than 
those found in the initial population.   There was one 
striking exception for the first start shape of the Odd Shape, 
where the GA evolved the most fit individual in run 32, 
which shows that even an inappropriate fitness function can 
sometimes produce desired results.  Since this only 
occurred once, it was treated as an outlier and was not 
reflected in the reported results. 
 

Test 3 Configuration: Fitness Function Varied 
Fitness Function Hamming 
Selection Method Ranking 
Crossover 0.60 
Mutation 0.003 
Population Size 100 

Test 3 Results: 
 Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 1 
 0 1 
 0 1 
Octagon 0 1 
 0 1 
 2 1 
Airplane 0 1 
 88 1 
 126 1 
Odd Shape 0 1 
 14 1 
 5 1 
 
Test 4: Crossover Rate Lower 
 
 This version of the GA lowered the crossover rate from 
.60 to .30.   Results were not significantly different from 
the standard GA. 
 

Test 4 Configuration: Crossover Rate .30 

Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.30 
Mutation 0.001 
Population Size 100 

Test 4 Results: 
Shape Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 2 
 0 1 
 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 1 
 18 1 
Odd Shape 0 1 
 2 1 
 5 1 
 
Test 5: Crossover Rate Higher 
 
 This version of the GA raised the crossover rate from 
.60 to .80.   Results were not significantly different from 
the standard GA.  Interestingly, the high dimensional 
airplane shape evolved its most fit value after run 50 in 2% 
of the tests. 
 

Test 5 Configuration: Crossover Rate  Higher 
Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.80 
Mutation 0.001 
Population Size 100 
Test 5 Results: 

Shape Best Fitness 
Evolved 

Run Number Best 
Fitness Occurred 

Hut 0 1 
 1 1 
 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 2 
 18 2 
Odd Shape 0 1 
 2 1 
 3 1 
 



Test 5: Mutation Rate Higher 
 
 This version of the GA raised the mutation rate from 
.001 to .01.   Results were not significantly different from 
the standard GA. 
 

Test 6: Mutation Rate Varied Higher 
Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.60 
Mutation 0.01 
Population Size 100 

Test 6 Results: 
Shape Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 1 
 0 1 
 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 2 
 18 2 
Odd Shape 0 1 
 2 1 
 3 1 
 
Test 7: Population Size Higher 
 
 This version of the GA raised the population size from 
100 to 200.   Results were not significantly different from 
the standard GA.  The run time was noticeably longer. 
 

Test 7 Configuration: Population Size Higher 
Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.60 
Mutation 0.001 
Population Size 200 

Test 7 Results: 
Shape Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 1 
 0 1 
 1 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 3 

 18 1 
Odd Shape 0 1 
 2 1 
 3 1 
 
Test 8: Population Size Lower 
 
 This version of the GA lowered the population size from 
100 to 30.   Results were not significantly different from 
the standard GA most of the time.  In approximately 5% of 
cases, the optimal solution would take 20-30 runs to evolve.  
This occurrence was erratic, as it did not correlate with the 
chain code or the transformation type.  This behavior is not 
reflected in the report which is intended to capture the 
normal behavior.   It likely reflects the lower number of 
highly fit building blocks in the initial population. 
 

Test 8 Configuration: Population Size Lower 
Fitness Function Histogram 
Selection Method Ranking 
Crossover 0.60 
Mutation 0.001 
Population Size 30 

Test 8 Results: 
Shape Best Fitness 

Evolved 
Run Number Best 
Fitness Occurred 

Hut 0 1 
 1 1 
 2 1 
Octagon 0 1 
 0 1 
 3 1 
Airplane 0 1 
 9 1 
 18 2 
Odd Shape 0 1 
 2 1 
 3 1 
 
 

Comparison of Best Fitness Evolved 
Test 

1 
Test 

2 
Test 

3 
Test 

4 
Test 

5 
Test 

6 
Test 

7 
Test 

8 
0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 
1 1 0 1 1 1 1 2 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
3 3 2 3 3 3 3 3 
0 0 0 0 0 0 0 0 
9 9 88 9 9 9 9 9 

18 18 126 18 18 18 18 18 



0 0 0 0 0 0 0 0 
2 2 14 2 2 2 2 2 
3 3 15 5 3 3 3 3 

 
8. Conclusions 
 
 The GA was able to evolve the best solution or very 
close to it that the chain code transformation algorithm was 
capable of producing in every test that used the histogram 
fitness function.   However, the GA converges very 
quickly.  Typically, the highest fit individual occurs in the 
first run, and the population is comprised of 100% of the 
highest fit individuals by the fourth or fifth run.    
 Changing the GA parameters had no noticeable effect on 
the algorithms’ performance.  The results of all the tests 
using the histogram fitness function were similar to one 
another.   Lowering the population size caused an 
occasional delay in evolving the best solution.   This 
suggests that the number of highly fit individuals in the 
initial population is the cause of the quick convergence. 
 The inability to reach a fitness level of 0 reflects 
shortcomings in the accuracy of the chain code 
transformation algorithm when uneven scaling and rotation 
are combined.  Future work on this algorithm will improve 
this functionality.   Also, the chain code transformation 
algorithm was implemented with a limited degree of 
granularity.  It should be possible to generalize the step 
functions to a continuous domain. 
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