
Evolving Feature Extraction Transformations
for Chain Code Based Shape Matching

Nancy Smith
Graduate School of Computer and Information Science

Nova Southeastern University
 smitnanc@nova.edu

Abstract

In pattern recognition, there is a trade-off between the
complexity of the feature extraction and the classification
steps. The closer the feature extraction methodology can
bring the feature vector to match the model, the easier it is
to properly classify it. In the domain of image processing,
the feature vector may take the form of a chain code.
Chain codes are useful to reduce the dimensionality of
shape representations. Chain codes are invariant to
translation, but not to rotation or scale. One of the
challenges of classifying a chain code is the many
variations of transformations required to fit the model of
the image. This paper presents a genetic algorithm that
evolves an optimal transformation for the chain code of a
shape that has been transformed in a prescribed way.

1. Introduction

 Feature extraction is an important step in pattern
recognition. Its purpose is to obtain an effective
representation of an object from the raw data for input into
a classifier. The following section will provide a context
for where feature extraction lies within the field of pattern
recognition, with a focus on image processing.
 Pattern recognition can be separated into the following
components: sensing, segmentation, feature extraction,
classification, and post-processing [3]. In the context of
visual pattern recognition, segmentation narrows the range
of interest to a partition of the image. Feature extraction
constructs a representation of the characteristics of that
partition that can be analyzed for classification. Depending
on the object to be classified, the features must be invariant
to transformations such as size and rotation. Classification
then uses that representation, or feature vector, to
categorize the object.
 There is a trade-off between feature extraction and
classification. A perfect feature extractor would render the
classification task trivial, whereas an omnipotent classifier
would need no feature extractor [3]. However, the
dimensionality of the data in an image makes the
omnipotent classifier far from attainable. The performance

of many classifiers is a function of the dimension of the
dataset. In other classifiers, a high dimension causes an
overfitting of the model that can result in misclassifications
[3].
 There are two major categories for reducing dimension,
feature selection and feature transformation. Feature
selection keeps a subset of features needed for
classification, whereas feature transformation constructs
new features out of the original ones. One of the common
ways to perform feature selection from an image is to
obtain the edges using an edge extraction algorithm. The
edges may be further manipulated to find a promising
subset of edges.
 Feature transformation can further reduce the
dimensionality by representing the edges in a more
compact form. For example, a matrix of pixels can be
converted into a list of line segments and angles. A line
drawing can be converted into a sequence of chain codes.
Further transformations may be applied to normalize the
data by operations such as rotation and translation. The
closer the feature extraction methodology can bring the
feature vector to match the model, the easier it is for the
classifier to correctly identify the object.
 There are a number of variations on the preceding steps
in the literature. A classifier may have a pixel map as
input. Transforms can be performed on pixel maps as well
as on more abstract representations [4]. Feature vectors
may be represented in a form that is invariant to transforms
[12]. The region of interest can be identified before edges
are extracted [8]. Although the optimal methodology is still
being sought, it is clear that reducing the dimensionality
and representing the image in a form that can be matched to
a model is a highly desirable goal which is still an area of
much research.
 One of the difficulties in generating the optimum feature
vector for classification lies in the many combinations of
transformations that may be required to fit the model of the
image. A genetic algorithm (GA) is able to do a parallel
search guided by a fitness function that measures the
similarity between the features of the image and the
features of the model. The problem with using a GA is that
they are sensitive to parameters such as population size,
crossover and mutation probabilities [9]. General guidelines

for GA parameters have been proposed in the literature [6]
[2]. Several researchers have performed research on how to
further optimize details of the GA, such as population size
[7], crossover techniques [2], and selection methods [5].
 In this paper, the application of genetic algorithms to
feature extraction transformations is examined. The
feature vector is in the form of a chain code. The genetic
algorithm evolves transformations of rotation and scaling
independently in the horizontal and vertical dimensions.
The optimization of the GA parameters that are critical to
the success of a GA in this domain is explored by
comparing commonly used guidelines with more optimized
approaches suggested in the literature.

2. The Chain Code Transformation
Problem

A chain code is a sequence of directions that follows the
outline of a shape. A code is assigned to each of the
possible directions. In the following example, 2 indicates
up, 0 indicates right, and so on. For example, the odd
shape chain code for Figure 2 starting on the lower left
corner is 221221076676655433.

Figure 1: Chain code directions Figure 2. Odd shape

 It is clear that such a chain code is invariant to
translation. But in the context of shape matching, small
changes in orientation and scaling can cause large changes
in the chain code. A simple 90 degree rotation results in a
chain code of 211007007654454433 which is not similar to
the original chain code.
 Figure 3 illustrates the problem underlying
transformations of chain codes. Both shapes are scaled up
100% in the horizontal direction, using slightly different
algorithms for whether to insert horizontal edges before or
after sloping edges. The effect of unguided decision making
is exaggerated when the length of the chain code is small.

Figure 3: Horizontal Scaling of Odd Shape

3. Chain Code Matching Techniques

 To avoid the problem of chain code transformations, a
variety of methods have been developed for shape
matching with the chain code representation.
 Researchers [1] developed a similarity measure using a
histogram of the number of each direction in a chain code.
For example, the chain code 2120766543 has one 0, one 1,
two 2’s, one 3, one 4, one 5, two 6’s, and one 7. It’s
histogram would therefore be 11211121. Differences in
scale were addressed by dividing the histogram by the
length of the chain code, with the assumption that the
length of the chain codes changes proportionately to the
scaling. The problem illustrated in Figure 3 shows this
assumption has limitations due to the discrete or step nature
of chain codes when the grid size is constant. Rotation was
compensated for by sorting the histograms. For the shape
in Figure 2, the histogram of 221221076676655433 is
12421242, while its rotated chain code of
211007007654454433 has a histogram of 42124212. The
histograms are matches when sorted. The histogram is not
unique to these figures and cannot be used to identify a
match, but is useful in identifying possible matches.
 In other research [10], a technique for normalizing a
chain code was developed. To account for rotation and
scaling, they determine the bounding box and find the
greatest length of each of the two chain codes. They
reorient and resize one of the boxes to match the other, and
recalculate its chain code. The shape is rotated 180 degrees
in the horizontal and vertical directions to get a total of 4
variations possible with this technique. The researchers
noted that chain codes are difficult to compare. They
developed a similarity measure based on the grid cells
covered by the shapes.

3. Genetic Algorithm

 A genetic algorithm uses the principal of natural
selection to evolve the fitness of a population under the
given environmental pressures. The algorithm starts with a
population of random solutions. The best solutions mate
and recombine to form new solutions that become part of
the population. The basic algorithm follows:

initialize the population
calculate the fitness of each individual
while ((solution not found) and (number of runs < max))
{
 select parents
 crossover pairs of parents to form children
 mutate the children
 calculate the fitness of the children
 select individuals to form next generation
}

 There are no strong conclusions on when a genetic
algorithm will outperform traditional methods [11]. If the
search space is large or not understood, or if the fitness
function is noisy, and if a global optimum is not required,
GAs can be effective. Their performance is highly
dependent on the details of the algorithm.
 Two components unique to each problem that are
critical to the success of a genetic algorithm are genotype
(chromosome representation) and the fitness function used
to guide the evolution of the population of potential
solutions.
 Other GA parameters have guidelines backed by
research, but are also highly dependent on the specific
problem. These include selection, crossover, mutation, and
population size. More often, researchers use guidelines and
tweak the parameters until the results are good enough, and
this is reflected in the literature. Often in papers that
emphasize the use of a GA, it is clear upon reading the
research that the GA is perceived as a means to the end, and
not the focus of the research. This makes it difficult to
determine optimum GA settings. For example, researchers
have independently found the best mutation rate to be .01
and .005-.01 [6][14]. However, it is quite common to find
rates up to 30% in the literature.
 Another issue is the interdependence of the GA
parameters. Population size, crossover rate, and mutation
rate cannot be optimized independently. The prospect of
varying 3 parameters to find the optimal combination
makes the analysis more complicated.

4. Shape Matching GA’s

 The shape matching problem has been defined as falling
into the following four categories: searching a database for
a similar shape; determining whether a given shape
matches a model or class closely enough; constructing a
shape of fewer elements that maintains the salient features
of the model; and transforming a shape to minimize the
dissimilarity between it and the model [14]. In a genetic
algorithm, the similarity measure becomes the fitness
function that guides the evolution of the population.
 The fitness function is critical to the success of a genetic
algorithm. For chain codes, the Hamming Distance
between two chain codes would be considered a deceptive
measure for a GA since a small change in rotation or
scaling often results in a large change in the chain code.
 In a GA used to evolve transformations on shapes
represented by the x-y coordinates, the Hausdorff distance
was used as a fitness measure [4]. This measure works
well since it accurately reflects the degree of rotation or
scaling based on point location. Its use cannot be extended
to chain codes since the distance does not correlate with the
changes in a chain code caused by scaling or rotation.
 The histogram method [1] works well for chain codes.
An unsorted histogram was used as the fitness function for
the chain code GA.

 Another decision unique to the shape matching domain
is the genotype. The genotype is the set of genes in a
chromosome, which result in the phenotype, or
characteristics of the individual. The chromosome in a
genetic algorithm is a potential solution. The genes are the
set of transformations that comprise that solution. The
phenotype is the resulting chain code after the chromosome
has been applied to the input shape.
 In another GA that was developed to evolve
transformations [4], the genotype consisted of a number of
bits for the x-translation, y-translation, x-scale, y-scale, and
rotation. These bits represented number of pixels, except
for rotation which was in degrees. It gave rise to a
phenotype of a pixel map of the image.
 The genotype chosen for this research is comprised of
genes in the form of floats for x-scale, y-scale, and rotation.
The scaling alleles represent percentage of increase or
decrease in size, while the rotation allele represents
degrees. The goal of the GA is to evolve a set of genes that
when applied to the input chain code creates the phenotype
of a chain code matching the original model.

5. Transforming Chain Codes

 At the heart of the chain code GA is a new algorithm for
transforming chain codes. As illustrated in Figure 3,
scaling scenarios can have different options which are
equally valid. With a GA, it isn’t necessary to choose one
option over another. Instead, we randomly choose one of
the valid options. Over the course of many generations,
the best option will appear and be chosen for mating, as it
will appear more fit than its counterparts as measured by
the fitness function.
 The size of the object can be increased or decreased
independently in the horizontal and vertical dimensions.
In this preliminary research, the granularity of the scaling is
restricted to factors of two. In each generation, the size of
the dimension being scaled will either double, halve, or stay
the same. It is anticipated that further work will enable the
generalization of the scaling factor.

A high-level description of the scaling algorithm follows:

For each direction in a chain code, perform one of the
following actions based on the values of the horizontal and
vertical scaling parameters:
 Keep this direction
 Keep this direction and duplicate it as next direction
 Keep this direction and add a new direction as next.
 Add a new direction and keep this direction as next.
 Skip this direction and keep the next direction.
 Keep this direction and skip the next direction

 Rotation is implemented as a step function, at 22.5
degree intervals. This is equivalent to eight intervals
around a 360 circle. An allele of 80 falls closest to the 90

degree interval and each chain code is modified to reflect
two steps around the circle. For the chain code of 217644,
a 90 degree rotation becomes 075422.

Figure 4: Rotation of Hut Shape Chain Code

6. The Chain Code Evolution GA

 The research can be described as follows: given the
chain code of a polygonal shape that has been modified in a
prescribed way, evolve the transformations that most
closely matches the original model. Vary one of the GA
components and analyze the difference in performance.
Repeat for each of the following components: fitness
function, selection method, crossover method, mutation
rate, and population size.

Genotype
 The encoding of the chromosomes, or genotype, is one
of the most important factors in the success of a genetic
algorithm [11]. The genotype used is a list of chain codes.
The transformations that were considered are rotation and
scale. The chromosome is comprised of three genes, each
of which is a four-byte float variable.

Fitness Function
 The fitness function used is an unsorted histogram of
chain code directions since it is fast and effective. This is
compared with the Hamming distance function.

Selection Methods
 The ideal selection method has been described [5] as one
that balances exploitation and exploration. Converging too
quickly can lose building blocks through spurious linkage
or bad luck. One of the ways to obtain correct convergence
is to slow the growth rate down, particularly in the
beginning of the evolutionary cycle, and then allowing it to
speed up to reduce the time complexity.
 The ranking selection method was used to choose the
mating population in the chain code GA. The fitness of
each chromosome is calculated, and parents are selected at
random from the top 20% of the population. The top 20%
are carried into the next generation without modification
(elitism), so that 80% of the population is replaced with
modified chromosomes in each generation. This prevents
the population from converging too quickly and losing

genetic diversity. Ranking keeps the selection pressure low
when the fitness variance is high, and vice versa [11].
 Ranking will be compared with fitness-proportional
selection. Holland’s original GA used this selection
method, also known as roulette wheel, and it remains a
commonly employed selection method in the current
literature. In the roulette wheel method, individuals are
assigned a slice of a roulette wheel proportional to their
fitness. When the wheel is spun, the individual assigned to
the slice the wheel lands on is chosen to be a parent.
Elitism is again used to prevent highly fit individuals from
being lost to crossover and mutation.

Crossover
 The ideal number of crossover points is that which
balances the pressure between exploitation and exploration.
The higher number of crossover points cause more
disruption and are important in the initial exploration of the
search space. Later in the evolutionary cycle, a lower
number of crossover points are more beneficial to exploit
the current observations [2]. A reduced number of
crossover points prevent the disruption of schemas with co-
adapted alleles from forming.
 Single point crossover was used in the chain code GA,
where a single locus is chosen at random for the crossover
point. The crossover rate will be .6 based on existing
research [2]. This crossover rate will be compared with
rates of .3 and .8.

Mutation
 Mutation is intended to preserve genetic diversity
against losing desired alleles during the course of the
evolution. It is a powerful disruptor of schemas. The chain
code GA uses a very low probability of .001, based on
existing guidelines [2]. This will be contrasted with a
higher probability of .01, also based on existing research
[6].

Population size
 The population must be sized so that an adequate
number of building blocks exist to evolve into the desired
schema. If a population is too small, a GA will not find a
solution to the problem [7]. If it is too large, time is wasted
processing unnecessary individuals and may be
unacceptably slow. Population size is dependent on the
number of genes and the quality of the fitness function [7].
Moreover, it interacts nonlinearly with crossover and
mutation probabilities [11]. Population sizes of 50-100 are
commonly used, based on published guidelines [2]. The
proposed research will use a population size of 100. It will
be compared with a population size of 200 and 30, the latter
being based on results in [6].

7. Results

 The following four chain codes were used in the
experiment: a 6-sided hut, an 8-sided octagon, an airplane
with 99 edges, and an odd shape with 18-edges.

Figure 5: Chain Codes Used In Experiment

 Eight tests were run with different GA parameters. Each
test was run 12 times, 3 times for each chain code.
 The transformations applied to the input start shape were
held constant to eliminate the random effects that result
because some transformations are not handled as well as
others. For example, the transformation algorithm does not
yet handle uneven scaling and rotation with 100%
accuracy. Figure 6 shows an example of the odd shape
chain code scaled up in the vertical direction and rotated 45
degrees, along with the two best attempts to reverse the
scaling and rotation. The resulting fitness values of 3 and 2
are a weakness of the transformation algorithm rather than
a failure of the GA. In cases where scaling was even in
both dimensions, or where rotation did not occur, the
transformation algorithm is able to reverse the
transformation 100% of the time. .

Figure 6: Uneven Scaling and Rotation of Odd Shape

 The first start shape used in the experiments was scaled
evenly in both directions and rotated 90 degrees. The
second start shape was scaled in the horizontal direction
and rotated 23 degrees. The third start shape was scaled in
the vertical direction and rotated 45 degrees.
 The results that are reported show the highest fitness
value that was evolved and which run it occurred in. The
best fitness value possible is 0, indicating no differences
exist between the evolved chain code and the original
model.
 Test 1 is defined as the standard model. It is used as a
basis of comparison with the remaining tests, which vary
one component of the GA.

Test 1: Standard Model
 This version of the GA converges quickly. Typically,
the best solution is found in the first run, and the population

is comprised of 100% of the highest fit individuals by the
fourth run. This likely reflects the fact that the initial
population contains individuals with a high fitness value.
Since the algorithm considers five ranges of values for the
scaling parameters, and eight ranges for the rotation
parameter, there is a total of 200 variations of the
chromosome. The initial population contains 100 random
variations. The crossover function is quickly able to find
the ideal chromosome with such a rich selection of building
blocks.

Test 1 Configuration : Standard Model
 Fitness Function Histogram
Selection Method Ranking
Crossover 0.60
Mutation 0.001
Population Size 100

Test 1 Results
Shape Best

Fitness
Evolved

Run Number Best
Fitness Occurred

Hut - first start shape 0 1
 second start shape 0 1
 third start shape 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 1
 18 2
Odd Shape 0 1
 2 1
 3 2

Test 2: Roulette Selection Method

 This version of the GA used a roulette selection method.
Results were not significantly different from the standard
GA using the ranking method.

Test 2 Configuration: Roulette Selection
Fitness Function Histogram
Selection Method Roulette
Crossover 0.60
Mutation 0.001
Population Size 100

Test 2 Results:
Shape Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 2
 0 1

 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 2
 9 1
 18 1
Odd Shape 0 1
 2 1
 3 1

Test 3: Hamming Fitness Function

 This version of the GA used a deceptive fitness function,
and was typically not able to evolve better solutions than
those found in the initial population. There was one
striking exception for the first start shape of the Odd Shape,
where the GA evolved the most fit individual in run 32,
which shows that even an inappropriate fitness function can
sometimes produce desired results. Since this only
occurred once, it was treated as an outlier and was not
reflected in the reported results.

Test 3 Configuration: Fitness Function Varied
Fitness Function Hamming
Selection Method Ranking
Crossover 0.60
Mutation 0.003
Population Size 100

Test 3 Results:
 Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 1
 0 1
 0 1
Octagon 0 1
 0 1
 2 1
Airplane 0 1
 88 1
 126 1
Odd Shape 0 1
 14 1
 5 1

Test 4: Crossover Rate Lower

 This version of the GA lowered the crossover rate from
.60 to .30. Results were not significantly different from
the standard GA.

Test 4 Configuration: Crossover Rate .30

Fitness Function Histogram
Selection Method Ranking
Crossover 0.30
Mutation 0.001
Population Size 100

Test 4 Results:
Shape Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 2
 0 1
 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 1
 18 1
Odd Shape 0 1
 2 1
 5 1

Test 5: Crossover Rate Higher

 This version of the GA raised the crossover rate from
.60 to .80. Results were not significantly different from
the standard GA. Interestingly, the high dimensional
airplane shape evolved its most fit value after run 50 in 2%
of the tests.

Test 5 Configuration: Crossover Rate Higher
Fitness Function Histogram
Selection Method Ranking
Crossover 0.80
Mutation 0.001
Population Size 100
Test 5 Results:

Shape Best Fitness
Evolved

Run Number Best
Fitness Occurred

Hut 0 1
 1 1
 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 2
 18 2
Odd Shape 0 1
 2 1
 3 1

Test 5: Mutation Rate Higher

 This version of the GA raised the mutation rate from
.001 to .01. Results were not significantly different from
the standard GA.

Test 6: Mutation Rate Varied Higher
Fitness Function Histogram
Selection Method Ranking
Crossover 0.60
Mutation 0.01
Population Size 100

Test 6 Results:
Shape Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 1
 0 1
 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 2
 18 2
Odd Shape 0 1
 2 1
 3 1

Test 7: Population Size Higher

 This version of the GA raised the population size from
100 to 200. Results were not significantly different from
the standard GA. The run time was noticeably longer.

Test 7 Configuration: Population Size Higher
Fitness Function Histogram
Selection Method Ranking
Crossover 0.60
Mutation 0.001
Population Size 200

Test 7 Results:
Shape Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 1
 0 1
 1 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 3

 18 1
Odd Shape 0 1
 2 1
 3 1

Test 8: Population Size Lower

 This version of the GA lowered the population size from
100 to 30. Results were not significantly different from
the standard GA most of the time. In approximately 5% of
cases, the optimal solution would take 20-30 runs to evolve.
This occurrence was erratic, as it did not correlate with the
chain code or the transformation type. This behavior is not
reflected in the report which is intended to capture the
normal behavior. It likely reflects the lower number of
highly fit building blocks in the initial population.

Test 8 Configuration: Population Size Lower
Fitness Function Histogram
Selection Method Ranking
Crossover 0.60
Mutation 0.001
Population Size 30

Test 8 Results:
Shape Best Fitness

Evolved
Run Number Best
Fitness Occurred

Hut 0 1
 1 1
 2 1
Octagon 0 1
 0 1
 3 1
Airplane 0 1
 9 1
 18 2
Odd Shape 0 1
 2 1
 3 1

Comparison of Best Fitness Evolved
Test

1
Test

2
Test

3
Test

4
Test

5
Test

6
Test

7
Test

8
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
1 1 0 1 1 1 1 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 3 2 3 3 3 3 3
0 0 0 0 0 0 0 0
9 9 88 9 9 9 9 9

18 18 126 18 18 18 18 18

0 0 0 0 0 0 0 0
2 2 14 2 2 2 2 2
3 3 15 5 3 3 3 3

8. Conclusions

 The GA was able to evolve the best solution or very
close to it that the chain code transformation algorithm was
capable of producing in every test that used the histogram
fitness function. However, the GA converges very
quickly. Typically, the highest fit individual occurs in the
first run, and the population is comprised of 100% of the
highest fit individuals by the fourth or fifth run.
 Changing the GA parameters had no noticeable effect on
the algorithms’ performance. The results of all the tests
using the histogram fitness function were similar to one
another. Lowering the population size caused an
occasional delay in evolving the best solution. This
suggests that the number of highly fit individuals in the
initial population is the cause of the quick convergence.
 The inability to reach a fitness level of 0 reflects
shortcomings in the accuracy of the chain code
transformation algorithm when uneven scaling and rotation
are combined. Future work on this algorithm will improve
this functionality. Also, the chain code transformation
algorithm was implemented with a limited degree of
granularity. It should be possible to generalize the step
functions to a continuous domain.

References

[1] Ahmad, M., Park, J., Chang, M., Shim, Y., Choi, T. Shape
registration based on modified chain codes.

[2] De Jong, K.A., Spears, W.M. (1992). A formal analysis of
multi-point crossover in genetic algorithms. Anals of Mathematics
and Artificial Intelligence, 5(1), 1-26.

[3] Duda, R.O., Hart, P.E., Stork D.G. (2001) Pattern
classification (2nd ed). New York: John Wiley & Sons, Inc.

[4] Escalera, A., Armingol, J.M., and Mata, M. (2003). Traffic
sign recognition and analysis for intelligent vehicles. Image and
Vision Computing. 21:247–258.

[5] Goldberg, D.E. and Deb, K. (1991). A comparative analysis
of selection schemes used in genetic algorithms. In Foundations
of Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1991,
69–93.

[6] Grefenstette, J. (1986). Optimization of control parameters for
genetic algorithms. IEEE Trans. Syst. Man Cybern. SMC-16, 1
(Jan./Feb. 1986), 122–128.

[7] Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L.
(1999). The gambler's ruin problem, genetic algorithms, and the
sizing of populations. Evolutionary Computation. 7, 3 (Sep.
1999), 231-253.

 [8] Hsu, S. and Huang, C. (2001). Road sign detection and
recognition using matching pursuit method. Image and Vision
Computing, 19:119–129.

[9] Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data
clustering: a review. ACM Comput. Surv. 31, 3 (Sep. 1999), 264-
323.

[10] Lu, G. Chain code-based shape representation and similarity
measure.

[11] Mitchell, M. (1998). An introduction to genetic algorithms.
Cambridge: MIT Press.

[12] Ozcan, E. and Mohan, C. K. (1997). Partial shape matching
using genetic algorithms. Pattern Recognition Letters. 18, 10 (Oct.
1997), 987-992.

[13] Veltkamp, R. C. (2001). Shape Matching: Similarity
Measures and Algorithms. In Proceedings of the international
Conference on Shape Modeling & Applications (May 07 - 11,
2001). Shape Modeling International. IEEE Computer Society,
Washington, DC, 188.

[14] Schaffer, J. D. Caruna, R. A. Eshelman, L. J. Das, R. ‘A
study of control parameters affecting online performance of
genetic algorithms for function optimization’, In Schaffer, pp 51-
60, 1989.

