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The ability to segment faces out of images in databases is an important initial step in 
many important applications, especially those requiring face recognition.   The k-means 
algorithm has been shown to be effective in segmenting face candidates, which are then 
classified as faces, typically using the existence of facial features, such as eyes and 
mouths.   
 
The research in this paper also used k-means to segment eye and mouth candidates within 
the face candidates.   The principal component eigenvectors of these images were used to 
train three neural networks: one to classify faces, one to classify eyes, and one to classify 
mouths.  The classifications achieved an 88.9%, 85.4%, and 97.8% success rate, 
respectively.   However, many of the images did not generate any valid candidates for 
classification.  The k-means algorithm was able to segment valid face candidates in 97% 
of the cases, but 20% of the images failed to generate any valid eye or mouth candidates.   
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Chapter 1 

Introduction 
 

Statement of the problem 

An important step in pattern recognition systems is segmentation of an image to 

detect the existence of an interesting pattern, and the isolation of the cluster containing 

the pattern.  The process of clustering is composed of pattern representation, which may 

include feature extraction and/or selection, defining a pattern proximity measure, 

clustering, and possibly data abstraction and assessment (Jain, Murty, & Flynn, 1999).  

These steps are clearly domain dependent.  The domain of this project is clustering high 

dimensional image data.  In particular, the project focuses on segmenting a photographic 

image to detect a human face.   

There is a tremendous amount of ongoing research in this area since there are 

many important applications that could benefit from facial analysis.  Once a face has 

been segmented out of an image, it can be classified as a specific person, gender, 

emotion, behavior, etc.  The security implications, marketing opportunities, and ability to 

enhance human-computer interaction cannot be underestimated.    Police mug shot 

albums could be scanned for individuals;   family albums could be scanned for a 

particular individual; security clearance for entry into buildings could be validated by 

scanning a database of authorized personnel; and search engines could locate unlabeled 

images.   
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Objectives 
 

This research proposes a clustering methodology to increase the accuracy rate of 

face detection by using principal component analysis (PCA) on features extracted from 

the face candidate clusters.   K-means is performed on the original image to segment out 

potential faces based on the lab color space.  K-means is then performed using the 

grayscale intensity space to segment potential eyes and mouths from the face segments.  

The primary hypothesis is that since eyes and mouths show up as dark clusters, or 

holes, inside face clusters, K-means will be able to effectively segment these facial 

features for classification.   

  The secondary hypothesis is that since there is less irrelevant background 

information in the eye and mouth segments than in the full face images, PCA will be able 

to encode the differences in these patterns more effectively.   
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Chapter 2 

Review of the Literature 
 

Existing Methodologies for Face Detection 

The primary technique for clustering an image to detect faces is based on skin 

color.  The color space and similarity measure are major variables in the research.  

Similarity measures include simple distance rules, Bayesian classifiers, self-organizing 

maps, and Gaussian joint probability density functions (Vezhnevets, Sazonov, & 

Andreeva, 2003).   Color spaces include RGB, CMY, YCbCR, HIS (HSV), YIQ, YUV. 

One of the more common algorithms used for clustering faces in recent research 

is based on the research by Viola & Jones (2004), and involves representing the image as 

Harr-like features, which can be computed at any scale or location in constant time. This 

algorithm also uses AdaBoost to select a small number of features, and an optimization 

method to focus subsequent processing on promising regions.    

Grangero, Jesus, & Correia (2009) use the Viola-Jones algorithm with a skin filter 

based on the RGB color space to accept or reject the presence of a face in a sub-window 

indicated by the face detection algorithm.   They also propose an algorithm for pose 

estimation using different AdaBoost classifiers (Support Vector Machines (SVM’s)) 

trained with frontal or profile only images.   

Ruan & Yin (2009) also use the Viola-Jones algorithm with a skin filter, but in the 

YCbCr color space which is less sensitive to lighting variations than RGB.   They use an 

SVM in the clustering process to rule out non-face regions, but use the eyes and mouth to 
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verify the face candidates.   The color difference is used to detect the eyes and mouth, 

and the geometric relationship is used to verify the face region.  Since their dataset 

contained faces of varying sizes, their method also incorporated resizing and merging 

clusters. 

Ying-hui, Xiao-juan, Chun-xia, & Ojong-fang (2009) perform preprocessing to 

remove highlighting and shadows caused by lighting.   The image is segmented using a 

gray-level threshold to get the face candidates.   The candidates are validated using holes, 

area, center of mass, aspect ratio, and template matching.  

Lekshmi, Kumar, & Vidyadharan (2008) used the k-means clustering algorithm to 

detect candidate faces.  Histograms were used to select the initial cluster centers.   The 

existence of facial features with appropriate distances relative to one another was used to 

validate the cluster as a face.   

Kobayashi & Zhao (2007) also used the k-means clustering algorithm.  The 

images were preprocessed to compensate for lighting variances.  After clustering, linear 

discriminate analysis (LDA) was applied, and a neural network validated whether the 

candidate was a face.   This method was compared to using principal component analysis 

in place of LDA, and also to using neural networks alone.  The researchers also varied the 

value of k in the k-means algorithm and concluded the error rate was significantly 

reduced with an increased number of clusters, settling on a value of 30 in their published 

results. 

Significance of research 

The research described in this paper is based on the observation that Kobayashi et 

al. (2007) applied LDA and PCA validation techniques on the entire face cluster, while 
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the other researchers typically use facial features in their validation.   It is known that the 

eyes and mouth are the most distinguishing features indicating the presence of a face.   

By reducing the initial dimension, from full face to eyes and mouth, much of the 

irrelevant data is removed from the validation process.   PCA can reduce the 

dimensionality even further, capturing the most salient aspects of facial features.   

PCA is used instead of LDA, since PCA is more effective than LDA with a 

limited number of samples (Vezhnevets, et al. 2003).   The number of samples required to 

train a classifier increases exponentially with the dimensionality of the sample.  Bishop 

(1995) refers to this as the ‘curse of dimensionality.’   Even after PCA has been applied, 

the dimensionality of the input feature vector is still fairly high.   This is supported by 

Kobayashi et al. (2007), with PCA yielding lower error rates than LDA. 

Barriers and Open Problems 

Most face detection algorithms perform well on normalized databases, but their 

performance deteriorates significantly with occlusions, variations in lighting, poses, and 

facial expressions (Grangeiro, et al. 2009).    
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Chapter 3 

Methodology and Algorithms 
 

Methodology 

The research described in this paper used k-means clustering to obtain face 

candidates.  Clustering was then performed on the face candidates to obtain eye and 

mouth candidates.  PCA was performed on the face, eye, and mouth candidates to form a 

feature vector that was used as input to a neural network (NN).   There are three NNs 

trained for binary classification: face or not-face, eye or not-eye, mouth or not-mouth.  

The results were compared to determine the advantage of using facial features over the 

entire face for classification.   

The remainder of this section discusses k-means, principal component analysis, 

and neural networks as they relate to this project.  The following section contains more 

specific information on the procedures used in this experiment. 

K-means 

 Image segmentation exhaustively partitions an image into multiple regions.  It is 

the process of assigning a label to every pixel in an image such that pixels with the same 

label share certain visual characteristics.  Pixels are comprised of attributes such as 

location, color, intensity, and texture.  Pixels are the objects that are clustered using the k-

means algorithm.   

 K-means clustering is a method for finding clusters and cluster centers in a set of 

unlabeled data.  The k-means algorithm partitions a set of n objects into k clusters so that 
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the resulting intracluster similarity is high but the intercluster similarity is low.  Cluster 

similarity is measured with respect to the mean of the objects in the cluster.   

Similarity Measure 

 Similarity is expressed in terms of a distance function.  Two closely related 

vectors have a small distance and a large similarity.   It is important to keep the similarity 

measure simple since the algorithm repeatedly calculates the similarity of each pixel to 

the mean of each cluster.  Image segmentation uses a weighted distance measure using 

pixel coordinates, color and/or intensity.   Consider that we have measurements xij for 

i=1,2,..N, on variables j=1,2,…,p (the pixel attributes).  We define a dissimilarity dj(xij, 

xi’j) between values of the jth attribute, and then define 

 

as the dissimilarity between objects i and i’.  The most common choice, and the one used 

in our image segmentation, is the squared distance: 

dj(xij,xi’j)=(xij-xi’j)2. 

 To combine the p attribute dissimilarities into a single overall measure of 

dissimilarity D(xi, xi’) between two objects (xi, xi’), a weighted average is used: 

     

where wj is a weight assigned to the jth attribute regulating the relative influence of the 

variable in determining the overall dissimilarity between objects. 
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Criterion Function 

The within cluster point scatter can be written as: 

W(C) 

 

 

where  is the mean vector associated with the kth cluster, and  

.  Thus, the criterion is minimized by assigning the n objects to the 

k clusters in such a way that within each cluster the average dissimilarity of the objects 

from the cluster mean, as defined by the points in that cluster, is minimized.  This makes 

clusters as compact and as separate as possible.   

K-means algorithm 

 The k-means algorithm is comprised of the following steps: 

1. Choose k cluster centers, either randomly or based on heuristics. 

2. For a given cluster assignment C, minimize the total cluster variance 

 

with respect to {m1,…mk} yielding the means of the currently assigned clusters 

 

 
3. Given a current set of means {m1,…,mk}, the total cluster variance is minimized 

by assigning each object to the closest current cluster mean.   
 

 

 
4. Repeat steps 2 and 3 until the criterion function converges.  (No pixels change 

clusters). 
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K-means Issues 

The k-means algorithm suffers from the problem of local optima.  The quality of 

the solution depends on the initial cluster centers.   Thus, it is important to either choose 

good initial centers or to rerun the algorithm several times and keep the best solution.  

Quality functions that measure intracluster similarity and intercluster dissimilarity are 

used to determine the best solution.    

Another issue with k-means is that choosing the number of clusters is difficult.  

Milligan & Cooper (1985) compared over 30 rules for estimating the optimal number of 

clusters, and concluded that there is no best solution.  The best is data dependent.  Some 

are good only in specific examples.    

The complexity of k-means is O(nkt) where n = number of objects, k= number of 

clusters, and t = number of iterations.   For image segmentation, n is quite large and 

processing time is sensitive to the number of clusters.   Because most of the convergence 

takes place in the early iterations, the condition in step 4 of the algorithm noted above is 

often replaced with a weaker condition, e.g., repeat until only 1% of the pixels change 

clusters. 

Principal Component Analysis 

Feature extraction plays an essential role in pre-processing the images before 

input into a classifier.  There are several reasons that it is undesirable to use very large 

vectors comprised of each set of pixel attributes for classification, primary among these is 

overfitting or losing the ability to generalize.   

Principal Component Analysis was used to reduce the dimensionality of the data 

while maintaining the maximum information about the patterns in the data.  The idea 
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behind PCA is to express the large one-dimension vector of pixels constructed from the 

two-dimension facial images into compact principal components of the feature space.  

This is called the Eigenspace projection.  It is calculated by identifying the eigenvectors 

of the covariance matrix derived from a set of facial images. 

Consider an image of 256x256 pixels.  It can be viewed as a point in 65,536-

dimensional space.  An ensemble of images maps to a collection of points in this huge 

space.  Faces have many similarities and the distribution will not be random.   The 

eigenvectors describe this subspace of facial images.  For a more formal definition, let A 

be a square matrix.  A non-zero vector C is called an eigenvector of A if and only if there 

exists a number (real or complex) λ such that AC = λC.  The value λ is called an 

Eigenvalue. 

 
Principal Component Analysis steps  

 
The following steps were used to extract eigenvectors of the principal components: 

1. Convert the images into a matrix of vectors. 
 

Let X = (a1 a2 … ak*k) represent a single image of k2 pixels. 
Let I = [ X1..Xm ]T represent a matrix of m images of form X, where m=number of 

images, n=number of pixels per image (k2). 
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2. Subtract the mean image from each image vector. 
 

Let ψ represent the mean image. 
 

ψ=  

 
where m is the number of image vectors. 

 
Let wj represent the mean centered image 

 
wj = Xi - ψ 

 
3. Calculate the covariance matrix. 
 

C = WWT 

 
where W is a matrix composed of column vectors wj placed side by side. 
 

3. Calculate the eigenvectors and eigenvalues of the covariance matrix 
 

Our goal is to find a set of ei’s which have the largest possible projection onto 
each of the wi’s.  We want to find a set of m orthonormal vectors ei for which the 
quantity 

 

 

 
is maximized with the orthonormality constraint 
 

 
 

It has been shown that the ei’s and λi’s are given by the eigenvectors and 
eigenvalues of the covariance matrix C. Since the size of C is very large, it is not 
practical to solve for the eigenvectors of C directly.  A common theorem in linear 
algebra states that the vectors ei and scalars λi can be obtained by solving for the 
eigenvectors and eigenvalues of the matrix WTW.  

 
Let di and ui be the eigenvectors and eigenvalues of WTW 

  
WTWdi = uidi 

 
By multiplying both sides by W 
 

WWT(Wdi) = ui(Wdi) 
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Which means the first M-1 eigenvectors ei and eigenvalues λi of WWT are given by   
 

Wdi and ui. 
 
 
 

4. Sort according to the eigenvalues 
 

The eigenvector with the largest eigenvalue reflects the greatest variance in the 
image.  They decrease exponentially, so that approximately 90% of the total variance 
is contained in the top 5% to 10% of the eigenvectors.  These are the principal 
components. 

 
Neural Network Classification 

 
Neural networks can be trained to perform complex non-linear functions, such as 

pattern recognition.  This research employs a feedforward neural network trained with 

back propagation.  Input vectors (eigenvectors) and the corresponding target vectors 

(emotions) are used to train the network.   

The problem of learning in a neural network can be framed as minimization of an 

error function E (Bishop, 1995).  The error is a function of the weights and biases in a 

network, which can be grouped together into a single W-dimensional weight vector 

w1..wW.   The training algorithm used in this project is a variation of gradient descent 

called scaled conjugate gradient.    

Gradient Descent 

The gradient descent algorithm searches along the direction of steepest descent, 

and the weights are updated using  

 (1) 

where η is the learning rate, and provided it is sufficiently small, the value of E will 

decrease each step leading to a minima where the vector ∇E=0.   There are problems with 
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convergence with the simple gradient descent algorithm, however.  It is difficult to find a 

suitable value for η.  The error surface may contain areas where most points do not point 

towards the minimum, resulting in a very inefficient procedure.   The basic algorithm can 

be enhanced by adding a momentum term µ to smooth out the oscillations, and by 

updating the learning rate (Bishop, 1995). 

Conjugate Gradient Descent 

 Another issue with gradient descent is choosing a suitable search direction.  

Suppose we have minimized along a line given by the local gradient vector.   Choosing 

successive search directions can lead to oscillations while making little progress toward 

the minimum.   For this problem, conjugate gradients are employed.   Suppose a line 

search has been performed along the direction dr starting from point wr to give an error 

minimum along the search path at the point wr+1.  The direction dr+1 is said to be 

conjugate to the direction dr if the component of the gradient parallel to the direction dr, 

which has been made zero, remains zero as we move along the direction dr+1.   It can be 

shown that the minimum of a general quadratic error function can be found in at most W 

steps using conjugate gradients (Bishop, 1995). 

Scaled Conjugate Gradient 

 A basic problem with line search is that every line minimization involves several 

error function evaluations, each of which is computationally expensive.  The procedure 

also involves a parameter whose value determines the termination criteria for each line 

search.  The performance is sensitive to this value.  The scaled conjugate gradient 

algorithm avoids the expense of line minimization by evaluating Hdj where H is the 

Hessian matrix comprised of the second derivatives of the error 
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 However, it it necessary to ensure that H is positive definite so that the 

denominator doesn’t become negative and thus increase the error.  This is done by adding 

a multiple of the unit matrix 

H + λI 

Where I is the unit matrix and λ ≥0 is a scaling coefficient.   The formula for the step 

length is then given by 

 

where dj is the direction at step j, and gj is the gradient vector at the jth step orthogonal to 

all previous conjugate directions.  The suffix j on λj reflects that the optimum value for 

this parameter can vary on each iteration.   Techniques like this are well known in 

standard optimization where they are called model trust regions.  The model is only 

trusted in a small region around the current search point.  The size of the trust region is 

controlled by λj so that for large λj the trust region is small.   In regions where the 

quadratic approximation is good, the value of λj should be reduced, while if the quadratic 

approximation is poor, λj should be increased.  This is achieved by considering the 

following comparison parameter 

 

The value of λj is then adjusted with 

If   > 0.75 then λj+1 =  
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If  < 0.25 then λj+1 = 4λj 

Else λj+1 = λj 

If  < 0, the step would actually increase the error so the weights are not updated, but 

instead the value of λj is increased and  is re-evaluated.  Eventually an error decrease 

will occur since once λj becomes large enough, the algorithm will be taking a small step 

in the direction of the negative gradient.  The two stages of increasing λj if required and 

adjusting λj are applied in succession after each weight update (Bishop, 1995). 

Hidden Layers 

 There is no theoretical reason to ever use more than two hidden layers, and for the 

majority of practical problems, there is no reason to use more than one hidden layer.   

The problems with multiple hidden layers include longer training times, the gradient is 

more unstable, and the number of false minima increases dramatically (Masters, 1993). 

 Long training times, overfitting and loss of generalization can be caused by too 

many hidden neurons.   The network may learn insignificant aspects of the training set 

that are irrelevant to the general population.   Too few neurons and the network is not 

able to learn the pattern at all.     The number of required neurons is dependent on the 

complexity of the function to be learned, and was discovered through experimentation.  

Early Stopping 

Also to avoid overfitting, a technique called early stopping was used.  In early 

stopping, the data is divided into three subsets.  The first is the training set and is used for 

computing the gradient and updating the weights.  The second subset is the validation set.  

The error on the validation set is monitored during the training process.  It normally 

decreases during the initial phase of training, along with the training set error.  However, 
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when the network begins to overfit the data, the error on the validation set typically 

begins to rise.  In this research project, when the validation error increased for six 

iterations, the training was stopped and the weights at the minimum of the validation 

error were returned.  The testing set is not used during training.  It is used to check the 

generalization ability of the network. 

Specific Procedures of Methodology 

 The steps required for face detection are as follows: 

1. Select a database that contains faces. 

2. Segment out potential faces with the K-means algorithm. 

3. Create an array of flags indicating face or not-face. 

4. Create a matrix of principal components of the potential faces. 

5. Train the neural network classifier with the PCA matrix and flag array. 

 The steps required for eye and mouth detection are identical with some variation 

in the segmentation step, which will be described in the following sections. 

Development Environment 

Matlab was used for image processing, K-Means clustering, PCA analysis, and 

neural network classification.   Matlab is a high level language that is widely used in 

research and engineering.  It is especially powerful when analyzing and manipulating 

vectors and matrices.  The scripts used in this research are included in Appendix A. 

Database Selection 

The images used in this study were from the University of Massachusetts 

Database “Labeled Faces in the Wild.” (Huang, et al. 2007).    These images are of 
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varying sizes and facial expressions, and may contain occlusions, rotations, multiple 

faces, eyeglasses, facial hair, background structures, and various lighting conditions.   

  

Figure 1: Example Images from Faces in the Wild Database 

 

Kmeans Clustering of Face Candidates 

 The face candidate database was created from 100 images in the Faces in the Wild 

database.  Each image was read into a 3-dimensional array.  A decorrelation stretch was 

performed to enhance the color separation.  The color space was converted to Lab.   The 

matrix values were converted to double, and the matrix was reshaped to combine the 

rows and columns into a single column.   For example, a image with the dimensions of 

162x198x3 becomes 32,076x2.   The rows correspond to points, and the columns 

correspond to variables for input into the kmeans algorithm.   

 Kmeans was performed for k=3, using a weighted distance measure for pixel 

coordinates and color attributes.  Clustering was repeated three times, each with a new 

random set of initial centroids.  The K-means algorithm returns a vector containing the 

cluster indices of each point, and the centroid locations.   
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 The cluster indices vector is reshaped into original dimensions of rows and 

columns (162x198 in our example).   The centroid locations are sorted and the highest 

value identifies the segment containing face candidates.    

At this point, we have a 2-dimensional gray scale matrix.  A disk-shaped 

morphological structuring element with a radius of 3 was used to eliminate small clusters.   

Edges were obtained using the Sobel method, which finds edges using the Sobel 

approximation to the derivative of the intensity values of the image.  It returns a matrix 

containing 1’s at those points were the gradient of the image is maximum. 

A two-dimensional convolution was performed on the edge matrix with a 

smoothing image to reduce the number of connected components.   

The edge matrix typically contains 20-30 connected components at this point, 

with many tiny components inside the larger components.   To eliminate these tiny 

components, we calculate the size of each component and discard those below a value of 

100 pixels.   We are typically left with 4-8 connected components which are the outlines 

of our potential faces.   

For each of the remaining connected components, a bounding box is calculated 

and displayed with the original image.  The user is prompted to identify whether the 

image is a face, and the response is saved.   The image is cropped with the coordinates of 

the bounding box, resized to 100x80, and saved to the face candidate database.   
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K-means Cluster 

 

Morphological Structuring 

 

Sobel Edges 

 

Convolution 

 

Sufficiently Large Clusters 

 

Final Face Candidates 

Figure 2: Example of Steps in Face Segmentation 

 

Kmeans Clustering of Eye and Mouth Candidates 

 The eye and mouth candidate databases were created from 97 images of the faces 

that had been segmented from the original image.   Many pre- and post-processing 

techniques, as well as several different color spaces were tried, and the best results were 

obtained with the following method.   

An image was read into a 3-dimensional array, and converted to a 2-dimensional 

grayscale image.   The matrix values were converted to double, and the matrix was 

reshaped to combine the rows and columns into a single column.   For example, an image 
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with the dimensions of 100x80 becomes 8000x1.  The rows correspond to points, and the 

columns correspond to variables for input into the k-means algorithm.   A histogram of 

the intensity values was used to initialize the centroids for the k-means algorithm.   

 Edges were obtained using the Sobel method, and the edges were convoluted with 

a smoothing image to reduce the number of connected components.  .A lower and upper 

bound was placed on the size of acceptable components.   Bounding boxes were obtained 

for each remaining disjoint set of edges. 

 Each bounding box was displayed against the original image, and the user was 

prompted to identify the component as eye, mouth, or neither.  The responses were saved 

in the isEye or isMouth array.  Images were resized to 50x50 for eyes, and to 25x100 for 

mouths and saved to their respective databases.  The images identified as ‘neither’ were 

randomly selected to be non-eye or non-mouth examples, and were resized and saved 

accordingly. 

 

K-means Cluster 

 

Sobel Edges 

 

Convolution 

 

Final Candidate 

Figure 3: Example of Steps in Facial Feature Segmentation 

 

Feature Extraction – Principal Component Analysis 

File images from the newly created database were loaded into Matlab into a 

matrix of images, with each row encoding one image. 

Eigenvectors were obtained from the matrix of images and sorted according to 
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eigenvalue.  The top 40 principal components were projected onto the feature space and 

used as input to the neural network classifier for the face candidates.  The top 20 

principal components were used for the eye and mouth candidates, as the images were 

smaller and contained less irrelevant detail. 

Training the Neural Network 

The neural network for face classification had 40 inputs, 15 hidden neurons, and 1 

output.  This network was trained with 659 examples, 97 of which were positive. 

The NN for eye classification had 20 inputs, 10 hidden neurons, and 1 output.  

This network was trained with 322 examples, 97 of which were positive. 

The NN for mouth classification had 20 inputs, 10 hidden neurons, and 1 output.  

This network was trained with 301 examples, 28 of which were positive. 

The goal underlying the network design was to discover the simplest network 

architecture possible so that overfitting could be avoided, and generalization could be 

maximized.  Bishop (1995) refers to this as finding the balance between bias and 

variance.   The procedure was to start with a network that was too small to learn the 

problem, and continue adding hidden neurons (and if necessary, hidden layers) until the 

error function was acceptable, and there was insignificant improvement from the previous 

trial.    

The initial network had a single hidden layer with five neurons, and was trained 

ten times, using different initial weights each time.   The best results of the ten training 

sessions were recorded.  A particular training run is sensitive to the initial weights, and it 

is necessary to repeat the training to discover the best network. 

It was determined through numerous trial runs that a NN with 15 hidden neurons 
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and early stopping resulted in the best generalization for the face NN, while both the eye 

and mouth NNs performed best with 10 hidden neurons.   Each of the NN’s used the 

scaled conjugate gradient training algorithm, with MSE as the performance function.    
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Chapter 4 

Research Results 
 

Format of Results 

The results are presented in the form of confusion matrices and receiver operating 

characteristics (ROC) for the best run of each of the three experiments.  The first 

experiment is for face detection, the second is for eye detection, and the third is for mouth 

detection.    

Results for full face detection 

 From 100 images containing faces, 659 face candidates were segmented using the 

kmeans algorithm.  97 of these candidates were identified as faces by the user.  Thus, if 

the NN were to classify the images perfectly, we would at best achieve a 97% success 

rate in face detection. 

The following results were obtained from the NN using 40 principal components 

as input, 15 hidden neurons, and 1 output neuron.    

.    

Figure 4: NN mean square error using 40 PCAs for entire face 

 
The following figure shows the ROC for the test cases.   The clustering of the data 

near the upper left corner indicates a good fit to the expected values. 
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Figure 5: ROC using 40 PCAs for entire face 

 
The confusion matrix shows the number of correct responses in the green squares, 

and the incorrect responses in the red squares.  The overall accuracy is reflected in the 

bottom right square and shows an 88.9% accuracy rate for the 99 test cases.   

 

Figure 6: Confusion Matrix using 40 PCAs for entire face 
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Results for eye detection 

 From 97 segmented images containing faces, 623 eye and mouth candidates were 

segmented using the k-means algorithm.  87 of these candidates were identified as eyes 

by the user.   245 were treated as non-eye examples, for a total of 322 examples to be 

used with the eye classifier.   

 Slightly better results were obtained using 20 PCAs rather than the 40 that was 

used on the entire face. 

The following NN results were obtained using 20 principal components as input, 

10 hidden neurons, and 1 output neuron.   70% of the examples were used for training, 

15% were used for validation, and 15% were used for testing. 

 

Figure 7: NN mean square error using 20 PCAs for Eye 

 

The following figure shows the ROC for the test cases.   The clustering of the data 

near the upper left corner indicates a good fit of the data to the expected values.   
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Figure 8: ROC using 20 PCAs for Eye 

 
The confusion matrix shows the number of correct responses in the green squares, 

and the incorrect responses in the red squares.  The overall accuracy is reflected in the 

bottom right square and shows an 85.4% accuracy rate for the 48 test cases.   

 

Figure 9: Confusion Matrix using 20 PCAs for eye 
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Results for mouth detection 

 From 97 images containing faces, 623 eye and mouth candidates were segmented 

using the kmeans algorithm.  28 of these candidates were identified as mouths by the 

user.   274 were treated as non-mouth examples, for a total of 301 examples. 

 Slightly better results were obtained using 20 PCAs rather than the 40 that was 

used on the entire face. 

The following NN results were obtained using 20 principal components as input, 

10 hidden neurons, and 1 output neuron.   70% of the examples were used for training, 

15% were used for validation, and 15% were used for testing. 

 

Figure 10: NN mean square error using 20 PCAs for mouth 

 

The following figure shows the ROC for the mouth test cases.    
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Figure 11: ROC using 20 PCAs for mouth 

 

The confusion matrix shows the number of correct responses in the green squares, 

and the incorrect responses in the red squares.  The overall accuracy is reflected in the 

bottom right square and shows an 97.8% accuracy rate for the 45 test cases.   

 

Figure 12: Confusion Matrix using 20 PCAs for Mouth 



 

 

29 

 

 

Summary of Results 

Out of a starting set of 100 images, 659 face candidates were segmented using K-

means.  97 of the 659 segmented images were actual faces.  The top 40 eigenvectors of 

these 659 images were used as input into a NN with 15 hidden neurons.  The NN 

correctly classified the faces 88.9% of the time. 

Out of 97 segmented faces, 623 eye and mouth candidates were segmented using 

K-means.  K-means failed to find any actual eyes or mouths in 19 of the 97 faces. 

Out of 322 eye candidates, 87 were actual eyes.  The top 20 eigenvectors of these 

322 images were used as input into a NN with 10 hidden neurons.  The NN correctly 

classified the eyes 85.4% of the time. 

Out of 301 mouth candidates, 28 were actual mouths.  The top 20 eigenvectors of 

these 301 images were used as input into a NN with 10 hidden neurons.  The NN 

correctly classified the mouths 97.8% of the time. 

Conclusions and Research Directions 

Face candidates were correctly classified in 88.9% of the cases.  Eye and Mouth 

candidates were identified in 85.4% and 97.8% of the cases, respectively.   However, 

while the k-means algorithm was able to segment actual faces quite successfully, it was 

less effective at segmenting eyes and mouths.  Often the eyes blend into the shadows of 

the face or the segments touch the hair so that the eye becomes part of a larger cluster.  

On darker complexions, the eyes could not be detected at all.  The mouth similarly 

blended into large clusters, especially when facial hair was present.  Often, only small 

portions of the mouth were segmented due to variations in intensity caused by glimpses 
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of teeth.  Of the 97 faces that were segmented from the original images, 19 had no 

positive mouth or eye candidates segmented from them.  Thus, even if the classifier were 

perfect, we could only achieve an 80% success rate in face detection using k-means to 

identify potential eyes and mouths.    

 It should be noted that face detection research is most often performed on 

normalized databases, with faces oriented facing toward the camera, with similar lighting 

and resolution.   The 88.9% success rate for face detection using PCA on the entire face 

is quite good considering the noise and variations in the Faces in the Wild database. 

 It is possible that the use of template matching may increase the effectiveness of 

k-means to isolate the small features of the face.  The geometry of the eyes and mouth 

fall within a well-defined range that could be used to heuristically select a portion of a 

larger cluster as a potential eye or mouth candidate.   An interesting method would be to 

classify each cluster in the post k-means processing phase, so that if an eye is positively 

identified, that information could be used to select remaining potential candidates from 

large clusters that would otherwise be discarded. 

 It would be interesting to continue the research using a video database.  Feature 

tracking could be used over several video frames to capture a sequence that could be 

classified as a particular gesture.   This could be on the level of faces such as turning the 

head, or on the level of features such as lifting an eyebrow.  It would also be interesting 

to use a more 3-dimensional model, such as optical flow techniques, to extract the facial 

features. 
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Appendix A 
 

Program Scripts 
 
 
 
% ------------------------------------------------------- 
% kmeansFace.m 
% A script file that takes the images identified in the filelist, 
% uses k-means to get face candidates, prompts the user to identify 
% if the image is a face, and creates a matrix of the top 40 pca 
% eigenvectors of those images.   
%  
% Output: trainin 
%         targetin 
% ------------------------------------------------------- 
  
% set up the input data  
inputImagePath = 'C:\nova\AI\images\FacesInWild\training\'; 
outputImagePath = 'C:\nova\AI\images\FacesInWild\training\facek\'; 
filelist = 'C:\nova\AI\images\FacesInWild\training\facelist.dat'; 
  
% use k-means to segment and save face candidate images 
[ allBB ] = getFaceCandidates( filelist, inputImagePath, 
outputImagePath ); 
  
% get all the segmented images into a matrix 
inTrainingImgPath = [inputImagePath 'facek\']; 
TrainImgFileList = [inTrainingImgPath 'facelist.dat']; 
[Imgs,w,h]=load_images(TrainImgFileList, inTrainingImgPath);   
  
% get numPca eigenvectors per image 
numPca=40; 
[Vecs,Vals,Psi]=pc_evectors(Imgs, numPca); 
  
% get the Pca Projections 
getPcas;                    % output ProjectionInv 
  
% rename for obviousness 
isFace = allBB(:,6);        % target vector 
trainin = ProjectionInv;    % use as input to neural network training  
targetin = isFace;          % use as input to neural network target 
%--------------------------------------------------------- 
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function [ allBB ] = getFaceCandidates( filelist, inputImagePath, 
outputImagePath ) 
% usage: allBBs=getFaceCandidates( filelist, inFilePath, outFilePath ); 
%    filelist is the name of the file with the list of image file names 
%    inFilePath is name where image files are located 
%    outFilePath is name where face candidates will be stored 
% 
%    allBBs has the following format for all face candidates: 
%   InImgNum  BB        BB        BB       BB         isFace?   
%    1.0000  103.5000  119.5000   63.0000  108.0000    1.0000 
%    1.0000  146.5000   71.5000   26.0000   30.0000         0 
%    2.0000    1.5000   23.5000   49.0000   81.0000         0 
%    2.0000   45.5000   59.5000  131.0000  194.0000    1.0000 
%--------------------------------------------------------- 
  
% inputImagePath = 'C:\nova\AI\images\FacesInWild\training\'; 
% outputImagePath = 'C:\nova\AI\images\FacesInWild\training\facek\'; 
% filelist = 'C:\nova\AI\images\FacesInWild\training\facelist.dat'; 
numimgs = linecount(filelist); 
  
fid = fopen(filelist,'r'); 
 if fid < 0 | numimgs < 1 
   error(['Cannot get list of images from file "' filelist, '"']); 
 end; 
  
allBB=[];         % Bounding Boxes, image number, and isFace flag 
singleBB=[];      % Bounding Boxes for single image 
imgNumBB=[];      % singleBB with imgNum column  
isFaceBB=[];      % singleBB with imgNum and isFace columns 
  
for i=1:numimgs                         % for each image in input file 
    % get input image 
    imgname = fgetl(fid);               % get name of image to read 
    if ~isstr(imgname)                  % EOF is not a string 
      break;                            % Exit from loop on EOF 
    end; 
    imgnameIn = [inputImagePath, imgname ];      
    Img = imread(imgnameIn);          % read img into full color matrix 
     
    fprintf('Processing image %s\n', imgname);    
    [singleBB] = getFaceBoundingBoxesKmeans(Img);%use kmeans to get BBs 
    imshow(Img); 
     
    %add columns for image num and isFace to BB array 
    dimBB=size(singleBB);               % (n 4) for n images               
    xnumBBs=dimBB(1);                    
    imgNumColumn=zeros(xnumBBs,1);      % make new empty column 
    imgNumBB=[imgNumColumn singleBB];   % prepend column to BB array 
    isFaceColumn=zeros(xnumBBs,1);      % make new empty column 
      
    % get user classification into new column, and save face candidates  
    for j=1:xnumBBs                     % for each face candidate in BB 
       imgNumBB(j)= i;                  % populate image number 
       rect = singleBB(j,:);            % get BB for this candidate 
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       faceCandidate=imcrop(Img, rect); % crop candidate from orig img 
        
       displayRect=rectangle('EdgeColor','r');%display rectangle on img 
       set(displayRect, 'Visible', 'on'); 
       set(displayRect, 'Position', rect);  
         
       userInput = input('Face? y/n : ', 's'); % prompt user for input 
       set(displayRect,'Visible','off'); 
          
       if userInput=='y'                % set isFace flag to true 
          isFaceColumn(j)=1; 
       end 
          
       %get unique output filename 
       imgnameOut = [outputImagePath, imgname ]; 
       imgnameDim=size(imgnameOut); 
       imgnameSize=imgnameDim(2); 
       imgnameExt=imgnameOut(imgnameSize-3:imgnameSize); 
       numPos=imgnameSize-3; 
       numToAppend=num2str(j); 
       if j<10 
         imgnameOut(numPos)='0'; 
         imgnameOut(numPos+1)=numToAppend; 
       else 
         imgnameOut(numPos:numPos+1)=numToAppend; 
       end 
       imgnameOut(numPos+2:numPos+5)=imgnameExt;          
          
       % resize image so they are all uniform 
       faceCandidate=imresize( faceCandidate, [ 100 80 ]);           
              
       %save cropped and resized image to new file 
       imwrite(faceCandidate, imgnameOut, 'jpg'); 
   end 
   isFaceBB=[imgNumBB isFaceColumn ];   
   allBB=[allBB; isFaceBB];           % add BBs for this image to allBB 
 end 
  
fclose(fid);                     
  
dimBB=size(allBB); 
numCandidates=dimBB(1); 
fprintf(1,'Completed processing %d images with %d 
candidates.\n',numimgs, numCandidates); 
%--------------------------------------------------------- 
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function [ BBarray ] = getFaceBoundingBoxesKmeans( inputImage ) 
% usage: BBarray = getFaceBoundingBoxes( Image ) 
% given an input image, this function returns an array containing 
% the bounding boxes of all the face candidates in the image. 
% The size of BBarray varies with number of face candidates. 
% 
% BBarray example for 4 face candidates: 
%   76.5000   62.5000  124.0000  120.0000 
%  136.5000  214.5000   65.0000   78.0000 
%  203.5000    1.5000   42.0000   15.0000 
%  326.5000    9.5000   44.0000   39.0000 
%--------------------------------------------------------- 
  
decorrCIR=decorrstretch(inputImage,'Tol',0.01); %increase color separ. 
he=decorrCIR; 
cform = makecform('srgb2lab');           %convert to lab color space 
lab_he = applycform(he,cform); 
  
ab = double(lab_he(:,:,2:3));            % prepare input for k-means  
nrows = size(ab,1); 
nrows = size(ab,1); 
ncols = size(ab,2); 
ab = reshape(ab,nrows*ncols,2); 
  
nColors = 3;                             % k=3 clusters 
[cluster_idx cluster_center] = 
kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); 
  
pixel_labels = reshape(cluster_idx,nrows,ncols); 
segmented_images = cell(1,3); 
rgb_label = repmat(pixel_labels,[1 1 3]); 
for k = 1:nColors 
color = inputImage; 
color(rgb_label ~= k) = 0; 
segmented_images{k} = color; 
end 
  
%determine which cluster has the faces.. red cluster 
mean_cluster_value = mean(cluster_center,2); 
[tmp, idx] = sort(mean_cluster_value); 
L = lab_he(:,:,1); 
red_cluster_num = idx(3); 
 
%get outline of clusters 
ima = segmented_images{red_cluster_num}; 
im1 = ima(:,:,1); 
  
%eliminate small clusters 
sedisk = strel('disk',3);      
im1 = imopen(im1, sedisk); 
 
%get edges 
BW = edge(im1,'sobel');     %finding edges  
[imx,imy]=size(BW); 
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msk=[0 0 0 0 0; 
     0 1 1 1 0; 
     0 1 1 1 0; 
     0 1 1 1 0; 
     0 0 0 0 0;]; 
B=conv2(double(BW),double(msk)); %Smoothing  image to reduce the number   
                                 %of connected components 
L = bwlabel(B,8);                % Calculating connected components 
mx=max(max(L));                  % number of connected components 
  
BBarray = zeros(mx,4);           %init array for bounding boxes 
numCandidates = 0; 
  
for j=1:mx                       %for each face candidate 
     
    %the following steps are done to eliminate remaining tiny clusters  
    %that occur inside bigger clusters.  
    [r,c] = find(L==j);   
    rc = [r c]; 
    [sx sy]=size(rc); 
    n1=zeros(imx,imy);  
    for i=1:sx 
        x1=rc(i,1); 
        y1=rc(i,2); 
        n1(x1,y1)=255; 
    end                     % Storing the extracted image in an array 
  
    n=find(n1);   
    [n,m]=size(n);           
 
     if n>100               %  make sure cluster is large enough 
        numCandidates = numCandidates + 1; 
        data = regionprops( L, 'basic'); 
        BBarray(j,:)= data(j).BoundingBox; %Bounding box of the jth img 
    end 
  
end 
  
SumRows = sum(BBarray,2); 
NonEmptyRows = find( SumRows > 0 ); 
BBarray = BBarray( NonEmptyRows, : ); 
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 %--------------------------------------------------------- 
 
% kmeansEyes.m 
% A script file that takes the images identified in the filelist, 
% uses k-means to get eye and mouth candidates, prompts the user 
% to identify if the image is an eye or mouth, and creates a  
% matrix of the top 20 pca eigenvectors of those images.   
%  
% Output: trainin 
%         targetin 
% ------------------------------------------------------- 
  
% set up the input data  
inputImagePath = 'C:\nova\AI\images\FacesInWild\training\facek'; 
filelist = 'C:\nova\AI\images\FacesInWild\training\facek\facelist.dat'; 
  
% use k-means to segment and save eye and mouth candidate images 
[ EyeBB MouthBB ] = getEyeCandidates( filelist, inputImagePath ); 
  
% get all the segmented images into a matrix 
inTrainingImgPath = [inputImagePath 'eye\']; 
TrainImgFileList = [inTrainingImgPath 'eyelist.dat']; 
[Imgs,w,h]=load_images(TrainImgFileList, inTrainingImgPath);   
  
% get numPca eigenvectors per image 
numPca=40; 
[Vecs,Vals,Psi]=pc_evectors(Imgs, numPca); 
  
% get the Pca Projections 
getPcas;                    % output ProjectionInv 
  
% rename for obviousness 
isEye = EyeBB(:,6);        % target vector 
trainin = ProjectionInv;   % use as input to neural network training  
targetin = isEye;          % use as input to neural network target 
%--------------------------------------------------------- 
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 function [ EyeBB MouthBB ] = getEyeCandidates( filelist, 
inputImagePath ) 
% usage: [ EyeBB MouthBB ] = getEyeCandidates( filelist, inputImagePath 
) 
%    filelist is the name of the file with the list of image file names 
%    inFilePath is name where image files are located. 
%    Assumes eye and mouth subdirectories exist under inputImagePath 
% 
%    EyeBB/MouthBB has the following format for all eye candidates: 
%   InImgNum    BB        BB        BB        BB     isEye/isMouth 
%    1.0000  103.5000  119.5000   63.0000  108.0000    1.0000 
%    1.0000  146.5000   71.5000   26.0000   30.0000         0 
%    2.0000    1.5000   23.5000   49.0000   81.0000         0 
%    2.0000   45.5000   59.5000  131.0000  194.0000    1.0000 
%--------------------------------------------------------- 
  
% inputImagePath = 'C:\nova\AI\images\FacesInWild\training\facek\'; 
% filelist = 
'C:\nova\AI\images\FacesInWild\training\facek\facelist.dat'; 
   
outputEye = [inputImagePath 'eye\']; 
outputMouth = [inputImagePath 'mouth\']; 
  
numimgs = linecount(filelist); 
  
fid = fopen(filelist,'r'); 
 if fid < 0 | numimgs < 1 
   error(['Cannot get list of images from file "' filelist, '"']); 
 end; 
  
singleBB=[];   % Bounding Boxes for single image 
EyeBB=[];      % Bounding Boxes for eye/non-eye imgs saved in eye dir. 
MouthBB=[];    % Bounding Boxes for mouth/non-mouth imgs in mouth dir. 
  
for i=1:numimgs                         % for each image in input file 
    imgname = fgetl(fid);               % get name of image to read 
    if ~isstr(imgname)                  % EOF is not a string 
      break;                            % Exit from loop on EOF 
    end; 
    imgnameIn = [inputImagePath, imgname ];      
    Img = imread(imgnameIn);            % read img into matrix 
     
    fprintf('Processing image %s\n', imgname);  
    imshow(Img); 
    [singleBB] = getEyeMouthBBKmeans(Img); 
  
    dimBB=size(singleBB);               % get num of BBs for this image 
    xnumBBs=dimBB(1);                    
    imshow(Img); 
     
    for j=1:xnumBBs                    
       rect = singleBB(j,:);            % get jth bounding box 
        
       displayRect=rectangle('EdgeColor','y'); 
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       set(displayRect, 'Visible', 'on'); 
       set(displayRect, 'Position', rect);  % display jth bounding box 
 
                 
       userInput = input('Eye or Mouth? e/m/n : ', 's'); 
       Candidate = imcrop(Img, rect); % crop candidate from orig img 
       dim=size(Candidate); 
       if (dim(1)==0) | (dim(2)==0) | (dim(3)==0) 
           fprintf(1,'Terminating on %d %d %s \n', i, j, imgname); 
           break; 
       end 
              
       if userInput=='e'              % set isEye flag to true 
           Candidate=imresize(Candidate, [ 50 50 ]); 
           imgname2 = '__e'; 
           outputImagePath = outputEye; 
           bb = [i rect 1]; 
           EyeBB=[EyeBB; bb]; 
         elseif userInput=='m'              % set isMouth flag to true 
           isMouthColumn(j)=1; 
           Candidate=imresize(Candidate, [ 20 100 ]); 
           imgname2 = '__m'; 
           outputImagePath = outputMouth; 
           bb = [i rect 1]; 
           MouthBB=[MouthBB; bb]; 
         else           
           if mod(j,2)==0 
             isEyeColumn(j)=0; 
             Candidate=imresize(Candidate, [ 50 50 ]);   
             imgname2 = '_ne'; 
             outputImagePath = outputEye; 
             bb = [i rect 0]; 
             EyeBB=[EyeBB; bb]; 
           else 
             isMouthColumn(j)=0; 
             Candidate=imresize(Candidate, [ 25 100 ]);   
             imgname2 = '_nm'; 
             outputImagePath = outputMouth; 
             bb = [i rect 0]; 
             MouthBB=[MouthBB; bb]; 
           end 
         end 
          
         set(displayRect, 'Visible', 'off'); 
                 
         %get unique output filename 
         imgnameOut = [outputImagePath, imgname ]; 
         imgnameDim=size(imgnameOut); 
         imgnameSize=imgnameDim(2); 
         imgnameExt=imgnameOut(imgnameSize-3:imgnameSize); 
         numPos=imgnameSize-3; 
         numToAppend=num2str(j); 
         if j<10 
           imgnameOut(numPos)='0'; 
           imgnameOut(numPos+1)=numToAppend; 
         else 
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           imgnameOut(numPos:numPos+1)=numToAppend; 
         end 
         imgnameOut(numPos+2:numPos+4)=imgname2; 
         imgnameOut(numPos+5:numPos+8)=imgnameExt;          
         
         %save cropped and resized image to new file 
         imwrite(Candidate, imgnameOut, 'jpg'); 
         fprintf(1,'Writing %d %d %s \n', i, j, imgnameOut); 
        
    end 
 end 
  
fclose(fid);                     
     
 
 %--------------------------------------------------------- 
 
function [ BBarray ] = getEyeMouthBBKmeans( inputImage ) 
% usage: BBarray = getFaceBoundingBoxes( Image ) 
% given an input image, this function returns an array containing 
% the bounding boxes of all the face candidates in the image. 
% The size of BBarray varies with number of face candidates. 
%  
% BBarray example for 4 face candidates: 
%   76.5000   62.5000  124.0000  120.0000 
%  136.5000  214.5000   65.0000   78.0000 
%  203.5000    1.5000   42.0000   15.0000 
%  326.5000    9.5000   44.0000   39.0000 
%--------------------------------------------------------- 
  
ImgGray=rgb2gray(inputImage);       % convert image to gray scale 
  
[mu,mask]=kmeansBW( ImgGray, 3);    % perform k-means  
  
pixel_labels = mask; 
nColors=3; 
 
segmented_images = cell(1,3); 
rgb_label = repmat(pixel_labels,[1 1 3]); 
for k = 1:nColors 
color = inputImage; 
color(rgb_label ~= k) = 0; 
segmented_images{k} = color; 
end 
 
im1=segmented_images{1}; 
im1=im1(:,:,1); 
 
BW = edge(im1,'sobel');         % get edges 
[imx,imy]=size(BW); 
  
% convolution 
msk=[0 0 0 0 0; 
     0 1 1 1 0; 
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     0 1 1 1 0; 
     0 1 1 1 0; 
     0 0 0 0 0;]; 
B=conv2(double(BW),double(msk)); %Smoothing  image to reduce the number 
of connected components 
L = bwlabel(B,8);               % Calculating connected components 
mx=max(max(L));                 % number of connected components 
 
BBarray = zeros(mx,4);      %init return array for bounding boxes of 
face candidates 
numCandidates = 0; 
  
for j=1:mx                  %for each face candidate, get bounding box 
     
    %the following steps are done to eliminate remaining tiny clusters 
that 
    %occur inside bigger clusters.  
    [r,c] = find(L==j);   
    rc = [r c]; 
    [sx sy]=size(rc); 
    n1=zeros(imx,imy);  
    for i=1:sx 
        x1=rc(i,1); 
        y1=rc(i,2); 
        n1(x1,y1)=255; 
    end                     % Storing the extracted image in an array 
  
    n=find(n1);   
    [n,m]=size(n);          % if n is less than 100x1, it should be 
eliminated as too small 
                            % goes from 13 to 7 in SteveBill, gets rid 
of dots inside face 
  
    % make sure candidate is not too small or too large 
    if (n>20) & (n<500)  
        numCandidates = numCandidates + 1; 
        data = regionprops( L, 'basic'); 
        BBarray(j,:)= data(j).BoundingBox; %Bounding box of the jth 
image 
    end 
  
end 
  
% eliminate empty rows for images too small to consider 
SumRows = sum(BBarray,2); 
NonEmptyRows = find( SumRows > 0 ); 
BBarray = BBarray( NonEmptyRows, : ) 
  
userInput = input('confirmation getEyeMouthBBKmeans ', 's'); 
  
fprintf(1,'Returning dim %d BB for %d face candidates.\n',mx, 
numCandidates); 
 
%--------------------------------------------------------- 
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% kmeansMouth.m 
% A script file that takes the images identified in the filelist, 
% uses k-means to get eye and mouth candidates, prompts the user 
% to identify if the image is an eye or mouth, and creates a  
% matrix of the top 20 pca eigenvectors of those images.   
%  
% Input:  inputImagePath 
%         filelist 
% 
% Output: trainin 
%         targetin 
% ------------------------------------------------------- 
  
% set up the input data  
inputImagePath = 'C:\nova\AI\images\FacesInWild\training\facek'; 
filelist='C:\nova\AI\images\FacesInWild\training\facek\facelist.dat'; 
 
% This step was already done when we processed eyes.  It only has to 
% be executed once since it gets all the eye and mouth candidates. 
% use k-means to segment and save eye and mouth candidate images 
% [ EyeBB MouthBB ] = getEyeCandidates( filelist, inputImagePath ); 
  
% get all the segmented images into a matrix 
inTrainingImgPath = [inputImagePath 'mouth\']; 
TrainImgFileList = [inTrainingImgPath 'mouthlist.dat']; 
[Imgs,w,h]=load_images(TrainImgFileList, inTrainingImgPath);   
  
% get numPca eigenvectors per image 
numPca=20; 
[Vecs,Vals,Psi]=pc_evectors(Imgs, numPca); 
  
% get the Pca Projections 
getPcas;                    % output ProjectionInv 
  
% rename for obviousness 
isMouth = MouthBB(:,6);    % target vector 
trainin = ProjectionInv;   % use as input to neural network training  
targetin = isMouth;        % use as input to neural network target 
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