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A major focus of research in computer graphics is the modeling and animation of realistic 
human faces.   Modeling and animation of facial expressions is a very difficult task, 
requiring extensive manual manipulation by computer artists. Our primary hypothesis 
was that the use of machine learning techniques could reduce the manual labor by 
providing some automation to the process. 
 
The goal of this dissertation was to determine the effectiveness of using an interactive 
genetic algorithm (IGA) to generate realistic variations in facial expressions.  An IGA's 
effectiveness is measured by satisfaction with the end results, including acceptable levels 
of user fatigue.  User fatigue was measured by the rate of successful convergence, 
defined as achieving a sufficient fitness level as determined by the user.  Upon 
convergence, the solution with the highest fitness value was saved for later evaluation by 
participants with questionnaires.  The participants also rated animations that were 
manually created by the user for comparison.   
   
The animation of our IGA is performed by interpolating between successive face models, 
also known as blendshapes.  The position of each blendshape’s vertices is determined by 
a set of blendshape controls.   Chromosomes map to animation sequences,  where genes 
correspond to blendshapes. The manually created animations were also produced by 
manipulating the blendshape control values of successive blendshapes. 
 
Due to user fatigue, IGAs typically use a small population with the user evaluating each 
individual.   This is a serious limitation since there must be a sufficient number of 
building blocks in the initial population to converge to a good solution. One method that 
has been used to address this problem in the music domain is a surrogate fitness function, 
which serves as a filter to present a small subpopulation to the user for subjective 
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evaluation.  Our secondary hypothesis was that an IGA for the high-dimensional problem 
of facial animation would benefit from a large population made possible by using a 
neural network (NN) as a surrogate fitness function. The NN assigns a fitness value to 
every individual in the population, and the phenotypes of the highest rated individuals are 
presented to receive subjective fitness values from the user.   This is a unique approach to 
the problem of automatic generation of facial animation. 
 
Experiments were conducted for each of the six emotions, using the optimal parameters 
that had been discovered.  The average convergence rate was 85%. The quality of the 
NNs showed evidence of a correlation to convergence rates as measured by the true 
positive and false positive rates.  The animations with the highest subjective fitness from 
the final set of experiments were saved for participant evaluation.  The participants gave 
the IGA animations an average credibility rating of 69% and the manual animations an 
average credibility rating of 65%.  The participants preferred the IGA animations an 
average of 54% of the time to the manual animations.  The results of these experiments 
indicated that an IGA is effective at generating realistic variations in facial expressions 
that are comparable to manually created ones. Moreover, experiments that varied 
population size indicated that a larger population results in a higher convergence rate. 
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Chapter 1 

Introduction 

 

Background  

A major focus of research in computer graphics is the modeling and animation of 

realistic human faces.   There has recently been a dramatic increase of interest in facial 

animation (Parke and Waters, 2008).    The film and game industries push the boundaries 

of established animation techniques, and the quest for believable embodied 

conversational agents (ECAs) is the subject of much research in the field of human-

computer interaction.  Modeling and animation of facial expressions is a very difficult 

task, requiring extensive manual manipulation by computer artists.  Despite the advances 

in computer hardware and improvements in software algorithms, there is still no 

computational system that approximates the human face (Griesser, Cunningham, 

Wallraven, and Bilthoff, 2007).  Nor is there any real-time system that generates subtle 

facial expressions and emotions realistically (Deng and Neumann, 2007).  Facial 

modeling and animation are still being defined, with no widely accepted solutions (Parke 

and Waters, 2008).  Animation techniques are ad-hoc and not easily extendible (Parke 

and Waters, 2008).  One of the primary research goals for facial animation is a system 

that creates realistic animation while reducing the amount of manual manipulation. 
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Facial modeling and animation can be roughly classified in the following 

categories: blendshape or shape interpolation, parameterizations, facial action coding 

system (FACS) approaches, deformation-based approaches, physics-based muscle 

modeling, 3D facial modeling, performance-driven facial animation, MPEG-4 facial 

animation, visual speech animation, facial animation editing, facial animation 

transferring, and facial gesture generation (Deng & Neumann, 2008).   The boundaries of 

these classifications overlap since many share the same techniques or integrate multiple 

methods.   The research described in this paper focuses primarily on the blendshape 

technique. 

A blendshape is the convex combination of a number of topologically conforming 

shape primitives 

Vj =  

where Vj is the jth vertex of the resulting animated model, wk is the blending weight, and 

bkj is the jth vertex of the kth blendshape.  The weighted sum is applied to the vertices of 

polygonal models.   The weights wk are manipulated by the animator by sliders, with one 

slider for each weight, or automatically by algorithms.    

Linear interpolation between successive blendshapes is commonly used for 

simplicity, but a cosine interpolation function can provide acceleration and deceleration 

effects at the beginning and end of an animation.  When at least four keyframes are 

involved, bilinear interpolation can generate a wider range of facial expression changes 

than linear interpolation (Deng & Neumann, 2008). 
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Modifying the parameters of the interpolation functions generates interpolated 

images.  Geometric interpolation directly updates the positions of the vertices, while 

parameter interpolation controls functions that indirectly move the vertices.  Although 

interpolations are fast, they are typically restricted to a small range of facial 

configurations since a blendshape model must be created for each desired facial 

expression.  This research project addressed this limitation by creating blendshapes not 

for specific expressions, but for the components of expressions, such as raising the brows 

or squinting the eyes. 

Genetic algorithms are an effective way to search extremely large or complex 

solution spaces.  Due to the complexity and large variations of facial images, many GA 

approaches have been applied to human face applications, including face detection, 

feature extraction, posture estimation, face recognition, and facial modeling.   GAs have 

also been used to generate creative temporal sequences, such as simple animation and 

music compositions.   When the goal of a genetic algorithm is subjective, that is, subject 

to human opinion, an interactive genetic algorithm (IGA) may be used.  An IGA replaces 

the typical mathematical fitness function with an interactive human-machine interface so 

that a user can evaluate the individuals subjectively.   

The major problem of IGAs is human fatigue. Psychological fatigue is especially 

problematic with temporal data such as movies since the user has to compare the current 

movie with previous ones in the user's memory (Takagi, 2001).  This is typically dealt 

with by using small populations.  Unfortunately, small populations suffer from the lack of 

genetic diversity, resulting in poor performance and a tendency to converge to a non-
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optimal solution.   To find solutions of high quality, the population size must be increased 

as much as possible (Harik, Cantu-Paz, Goldberg, & Miller, 1999).   One method that has 

been used to address this problem is to use a fitness prediction function, also called a 

surrogate function.  This algorithm uses a large population, applies a predictive fitness 

function to all the individuals, and then shows a small subset of the most likely 

candidates to the user for evaluation (Takagi, 2001; Jin, 2005).   

The most popular models used as surrogate functions are polynomials, kriging, 

and neural networks, including multi-layer perceptrons, radial basis function networks, 

and support vector machines (Jin, 2005).   It is desirable to use the simplest method 

possible.  If the given samples can fit a lower order polynomial model, it is the best 

choice.  However, in the case of a high-dimensional input space and a limited number of 

samples, a neural network is preferred.  There is a significant body of research supporting 

the use of neural networks for classifying facial expressions.   

Problem Statement 

Computerized 3D facial animation is a difficult task that currently requires 

extensive manual intervention.   Variations in a given facial expression are rarely pursued 

outside of high-budget feature films due to the time and effort involved in manually 

generating realistic variations.   The research described in this paper used an interactive 

genetic algorithm (IGA) for generating realistic variations in 3D facial expressions.     

In one of the more popular animation techniques, a number of face models are 

created from the basic shape.  Then distinct model variations are selected and assigned 

(key framed) to points throughout the scene, interpolating from one model to the next.  
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This method of transitioning among predefined facial models, or blendshapes, has been 

used in commercial movie productions.  Due to its efficiency and simplicity, the 

blendshape approach is widely used for key framing facial animation (Li and Deng, 

2008).  The mechanisms for creating and controlling blendshapes are built into many of 

the current commercial graphic programs.  The increase in power and affordability of 

graphic systems such as Maya and 3D Studio have made modeling, animation, and 

rendering more easily available for research purposes (Parke and Waters, 2008). 

One of the reasons that facial animation is difficult is that there is both a random 

component and a predictable component to expressions.  Certain facial movements are 

expected due to the important role they play in communication (Griesser, Cunningham, 

Wallraven, and Bilthoff, 2007).  Facial expressions are used to modify the meaning of 

what is being said, to control the flow of conversation, and to provide feedback to the 

speaker on how to proceed (Cunningham, Kleiner, Bilthoff, & Wallraven, 2004).   For 

example, if the listener nods, the speaker knows to continue.  If the listener appears 

confused, the speaker may try to explain in more basic terms.   Such observations are the 

basis of rule-based systems that have been developed to drive embodied conversational 

agents (ECAs).  Once the rule-based system has determined a new target expression, the 

face model is transitioned to the corresponding blendshape.  Rule-based systems are 

useful for interactive roles.  They focus on the roles of speaker and listener, but tend to 

suffer from static emotional expressions (Mana and Pianesi, 2006).  A sad expression 

always generates the same sad expression. 
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Another important technique for driving the animation of facial expressions is to 

map motion-capture sequences to blendshape face models (Li and Deng, 2008).  This 

technique is better suited for non-interactive applications such as making movies. 

Although it is a simple and fast animation technique, the modeling phase requires many 

tedious hours of manual labor to create enough target blendshapes.  For instance, in the 

feature film The Two Towers, the facial animations of Gollum required 675 blendshapes.  

Dissertation Goal 

The goal of the research was to determine the effectiveness of using an interactive 

genetic algorithm to generate realistic variations in facial expressions.   Given a target 

emotion, the IGA evolves variations of the face expressing that emotion.  The emotions 

considered in this project are limited to the six basic emotions of happiness, sadness, 

disgust, anger, fear, and surprise, as identified by Ekman and Friesen (1978).     

The input target emotion can be considered a predictable component of the typical 

facial animation system since variations in emotional expressions are usually created 

manually.   The IGA evolved face models expressing the target emotion.  The face 

models were assigned to the key frames in an animation sequence, which added a random 

component to the animation sequence.   The graphics software did the interpolation 

between the key frames automatically. The human user evaluated the animation 

sequences. 

To address human fatigue, a neural network was used as a surrogate fitness 

function.  The initial neural network was trained with samples of the basic emotions.  

These samples represented the most predictable elements of the basic emotion.  
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IGAs have been used to generate animated art, animated arms and legs, 2-D facial 

expressions (Takagi, 2001), and 3-D facial models (Ho, 2001).   However, it is believed 

that the use of an IGA to generate 3-D facial animation is a unique contribution to the 

research literature.     

Neural networks have been widely used as a surrogate function for IGAs evolving 

music.  These IGAs are similar to the research described in this paper in that they 

generate a creative temporal sequence that follows predictable rules.  NNs have often 

been used in the field of facial expression classification using a variety of feature 

extraction techniques to represent the face (Fasel & Luettin, 2003).  It is believed that the 

use of NNs as a surrogate fitness function for evaluating 3-D facial models is a unique 

contribution.   

Research Questions 

Chromosome representation 

One of the key issues for any genetic algorithm is the genomic representation of 

the problem.    Our genome represents a sequence of face models, which are comprised of 

FACS-based components.   

Integration with rule-based requirements 

Another question is how to integrate the random variations produced by the IGA 

with the rule-based requirements of facial animation.   Our research does not attempt to 

determine why the face should express an emotion.  It only produces variations in the 

emotion that would be predetermined by a rule-based or motion-capture system. 
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Convergence 

One of the key design issues is how to ensure enough diversity in the population 

to converge to a satisfactory solution.    This dissertation investigates the effectiveness of 

using a large population to ensure an adequate number of building blocks.   

Fitness prediction function 

Another research question is how best to incorporate a fitness prediction function 

that can quickly be applied to the total population so that only the most promising 

candidates have to be evaluated by the user.  There are challenges to integrating the two 

types of fitness values in the selection criteria. 

The details of the criteria used to select the mating population are not well 

established.   One model evolves two separate populations, migrating individuals 

between them depending on fitness.  The selection algorithm examines the subjective 

fitness value for one population, and the surrogate fitness value for the other population.   

In this model, the complication moves from selection to migration. 

  An alternative model is to evolve a single population, replacing the surrogate 

fitness value with the subjective fitness value.  This model loses the subjective fitness 

value unless a mechanism is implemented so that it is not re-evaluated by the NN on the 

next run.  One research paper associated a confidence rating to the fitness value.   

Another issue is being able to normalize the subjective value to have the appropriate 

value relative to the surrogate values.   

A third option is to base the mating selection on the surrogate fitness value, and to 

use the user-supplied fitness values only to bias the surrogate function.   This method of 
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evolution control is the one most often described in the literature.    Surrogate fitness 

functions are used not only with subjective fitness functions, but also with 

computationally costly fitness functions.  In one case where the original fitness function 

was computationally expensive, this option required 40% of the population to be 

evaluated with the original fitness function to ensure optimal convergence (Jin, Olhofer, 

and Sendhoff, 2001).  However, when the original fitness function is subjective, the 

global optimum is a region of search space rather than a point since humans find it 

difficult to rate individuals that have small differences between them.  

Relevance and Significance 

There has recently been a dramatic increase of interest in facial animation (Parke 

and Waters, 2008).  Most of the current animation techniques are based on research 

conducted over 20 years ago (Parke and Waters, 2008).  The strongest interest in facial 

animation arises from the big animation studios producing feature films.  The game 

industry also has a big influence on the demand for improved facial animation.  Facial 

animation is also an important research goal in human-computer interaction, as in the 

quest to build a believable Embodied Conversational Agent (ECA).  These agents would 

be able to communicate complex information with human-like expressiveness.  ECAs are 

becoming popular as front ends to web sites, and as part of many computer applications 

such as virtual training environments, tutoring systems, storytelling systems, portable 

personal guides, and entertainment systems (Mana and Pianesi, 2006).  The use of virtual 

humans in electronic commerce sites could enhance the user experience and boost sales.  

Conversely, users may be less likely to purchase items from a virtual agent who appears 
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dishonest or insincere.  Sympathetic virtual assistants could help lessen a user's anger and 

frustration.  These types of applications will require realistic and believable graphical 

renderings of facial expressions. 

IGAs have been used to create animated graphic art by evolving mathematical 

equations that apply to the pixel attributes (Takagi, 2001).  They have also been used to 

create animations by evolving the combination of joint angles for arms and legs, and for 

evolving deformations of a 2D body for comical movements (Takagi, 2001).    IGAs have 

been used with 2D photos of partial images to compose a facial image for identifying a 

criminal suspect.  IGAs have often been used to create line drawings of faces as research 

tasks.  IGAs have also been used to change facial expressions in photo images by 

changing pixel positions (Takagi, 2001).  Since IGAs have been used for animation and 

for 2D facial generation, it was reasonable to expect that IGAs could be extended to the 

animation of 3D facial expressions.    

Modeling and Animation  

 Modeling and animation are two distinct components to facial animation 

research.  In the last few years, research in both rule-based and statistical models have 

obtained important results in modeling facial expressions to be used in synthetic talking 

heads.  But the generation of models for realistic animation remains critical and is still an 

open problem.  Most of the rule-based systems suffer the disadvantage of a static 

generation, with no variation in the given facial expression. Stochastic models can be 

more flexible but most of the work in this area focuses on speech and lip movements 

(Mana and Pianesi, 2006).  Our research explores the use of an IGA to introduce the 
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flexibility that allows for credible variations in facial expressions.   The idea is to define 

the genome as the basic building blocks that comprise facial expressions.  The building 

blocks are combined using the IGA until an acceptable variation of the target expression 

is evolved.    

The building blocks of facial expressions have been studied extensively. There is 

a significant history of research into automatically extracting facial features for 

recognizing facial expressions, and also in computer graphics for representational models 

of facial expressions.  One of the most widely used resources for describing facial 

expressions is the Facial Action Coding System (FACS) developed by Ekman and Friesen 

(1978).   FACS describes 46 facial action units, segmenting the facial muscles into the 

smallest visible changes.  Combinations of these action units can be used to describe 

different facial expressions.   FACS provides an intuitive, semantic basis for facial 

animation (Griesser, Cunningham, Wallraven, and Bilthoff, 2007).    

The face model must be created in such a way that it can be easily modified to 

reflect facial movements.   This is often done with a polygonal mesh based on the 

pioneering work of Parke (Parke, 1972).   The vertices of the mesh are manipulated to 

create changes in the basic face, such as raising the brows or squinting the eyes. 

Approximating a face with polygons has several performance advantages.  Issues of 

determining visible surfaces and their shading have been solved with fast algorithms that 

are implemented in hardware.  Moreover, Gouraud and Phong shading algorithms can 

make a polygonal surface appear continuously curved. Face models may also be created 

using parametric curves, but the rendering algorithms are less efficient, and deformations 
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such as wrinkles are difficult to simulate.  Our research was conducted using a polygonal 

mesh.  More specifically, there is a polygonal facial model for each of the facial action 

units to create a blendshape animation rig.   

To illustrate how a blendshape animation rig works, consider an example with a 

sphere and a cube, with a one-to-one correspondence between the vertices of the two 

meshes.  By subtracting a sphere point from the corresponding cube point, a delta vector 

is created.  This is done for each pair of vertices.  If, for each point of the sphere, the 

corresponding delta vector is added, the cube is created.  The delta vector is multiplied by 

a weighting factor to move from the sphere (the weight is zero) to the cube (the weight is 

one).  In terms of facial animation, for each of the FACS models, the default pose is 

subtracted from the FACS pose to generate delta vectors for each point in the geometry.  

Each set of delta vectors is assigned a weight, and by changing the weights, various 

FACS action units can be combined to create the desired expression. The weights of the 

delta vectors are modified using a blendshape control.  The blendshape controls comprise 

the blendshape animation rig that is used to generate the phenotype.   This FACS 

blendshape representation was used in the feature film, Benjamin Button, where the 

animation was driven by mapping motion capture data from an actor (Roble, 2009).   Our 

research uses an IGA to drive the animation of a FACS-based blendshape animation rig.  

The FACS-based genome maps directly to the blendshape control values.  This is a 

unique approach to the important problem of automatic generation of facial models for 

animation. 
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Interactive Genetic Algorithms 

Genetic algorithms are search algorithms based on natural selection and genetics 

(Goldberg, 1989).    They combine survival of the fittest with a structured yet randomized 

information exchange to form a search with human like characteristics (Goldberg, 1989).  

The search is guided by a fitness function which determines which of the individuals 

(solutions) in the population are fittest and should be chosen to reproduce.  Typically, 

convergence of the GA is based on minimizing error criteria.  Systems that create 

graphics or music must be subjectively evaluated for the best results since it is difficult to 

quantify the human opinion and understanding that is needed to rate the fitness of an 

individual (Takagi, 2001).  

GAs are complex non-linear algorithms (Harik, et al., 1999).  They work by 

discovering, emphasizing, and recombining good building blocks of solutions in a highly 

parallel manner (Mitchell, 1998).  This is known as the schema theorem and is 

fundamental to the analysis of genetic algorithms.  There must be a sufficient number of 

building blocks in the initial population to arrive at an optimal solution.   Otherwise, the 

chances of the GA converging to a good solution are small (Harik et. al., 1999). 

Large populations generally converge toward the best solutions, but they require 

more computational cost and memory requirements.   Harik et al. (1999) showed that two 

variables that affect the needed population size are the length of the schemata, and the 

variability of the problem.  Problems with long schemata are more difficult than those 

with short schemata since the long schemata occur less frequently in a random 
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population.  Problems with high variability are hard because it is difficult to distinguish 

good from less-good solutions. In general, the GA population size grows with the square 

root of the size of the problem (Harik et al., 1999). 

Since facial expressions are highly variable, it is desirable to have a large 

population in a GA.   However, due to user fatigue, it is impractical to subjectively 

evaluate each chromosome of a large population.  The use of a predictive fitness function 

enables an IGA to approximate the fitness of all individuals, so that only the most 

promising candidates are shown to the user for a subjective evaluation.  One of the 

common surrogate functions used is a neural network (Jin, 2005). 

Neural networks are well suited for complex pattern classifications, and have been 

used to classify facial expressions in a number of research projects. By using NNs as a 

fitness approximation function, it is possible to use larger populations required for high 

quality solutions.  It also speeds up the convergence, thus avoiding user fatigue.  Lastly, it 

is more likely to present satisfying solutions to the user, which lessens user frustration 

(Llora, Sastry, Goldberg, Gupta, & Lakshmi, 2005).    

Barriers and Issues 

Facial animation is still a very challenging research area.  The deformation of 

facial movements is complex, and humans are extraordinarily sensitive to the subtleties 

of facial motion.   Even the most sophisticated systems still require significant manual 

intervention since it is difficult to quantify acceptable images from those that appear 

impossible or "uncanny."    It is one of the primary reasons why a human is required to be 
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in the loop for the final evaluation of a new expression sequence, even after a large 

database of examples has been gathered for training a classifier.  

Most of the research on facial animation focuses on developing rule-based 

systems, where the rules are applied to the roles of speaker and listener.  When an 

emotion is required, the same emotion elicits the same expression.  The only variations 

are duration and intensity since these are easy to quantify in a rule-based system.    

Human emotion is a difficult interdisciplinary research topic across the fields of 

computer graphics, artificial intelligence, communication, and psychology (Deng and 

Neumann, 2007).    As powerful graphics programs become available, it is more feasible 

for researchers to focus on 3D animation.  Moreover, the integration of separate fields of 

study is made possible through increasing internet access. 

Even with these advantages, research that involves 3D animation is time-

consuming.   The graphics software packages have a large learning curve, and much 

effort is required to create the preliminary environment.   There are many variations in 

the design of the genetic algorithm that can affect its success, which must be examined 

carefully in each step of the process to ensure they have the intended result.   

Limitations and Delimitations 

Ideally, the genotypes in this experiment would be mapped to a variety of faces to 

validate that the genome could be generalized across phenotypes.  However, due to the 

time involved in generating facial models, our research project used a single face as the 

basis for the FACS models that comprise the phenotype expressed by the GA.   
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Facial animation research often focuses on the role of speech.  While the GA in 

this project may evolve random visemes (visible component of a phoneme), there is no 

framework for specifying a phrase to be spoken while evolving the expression to 

accompany the phrase.  

Since FACS does not incorporate any temporal data, transition rates between two 

expressions, and the duration of any particular expression, are not part of the genome. 

While the timing variations contribute to realistic expressions, they are not a part of this 

dissertation.   

 
Definition of Terms 

Allele – value or setting for a trait encoded in a gene. 
 
Blendshape – a face model used as the beginning or ending frame for an animation 
sequence in which linear interpolation is used to generate the intermediate frames. 
 
Chromosome – a collection of genes.  In this project, a chromosome encodes a sequence 
of face models.   
 
Facial Action Coding System – a system to categorize the physical components of facial 
expressions. 
 
Face Model – a static 3D representation of the face.  In this project, the face model is 
always a polygonal mesh. 
 
Gene – components of a chromosome that can be thought of as encoding a trait.   In this 
project, a gene corresponds to a face model. 
 
Genome – the complete collection of genetic material (all chromosomes).  
 
Genotype – the particular set of genes contained in a genome. 
 
Interactive Genetic Algorithm – a GA that uses human opinion as the fitness function. 
 
Phenotype – the physical expression of the traits encoded in the genotype.  In this project, 
the phenotype is an animated sequence of 3D polygonal mesh face models. 
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Predictive or Surrogate Fitness Function – an heuristic for the actual fitness function.  In 
a GA, it is used to select a subset of most fit chromosomes to be evaluated by the more 
accurate original fitness function. 
 

Summary 

Facial animation is still a difficult, manually intensive task that is the subject of 

ongoing research.  One of the goals of facial animation is a system that creates realistic 

variations in human expressions and is automated as much as possible.   

The blendshape approach of interpolating between face models is very fast, but 

requires face models to be created for each target expression.   By creating a set of 

blendshapes based on FACS, it is possible to generate any possible facial configuration.  

This is a very large problem space, which may be suitable for a genetic algorithm 

approach. 

Since the desired result of the GA is subjective, it is appropriate to use human 

opinion as the fitness function used to guide the evolution.  To ensure a sufficient number 

of building blocks in the initial population, a predictive fitness function can be used with 

a large population to find a subset of the candidates who are the most fit.  This subset of 

candidates can then be shown to the human for evaluation.  A good choice for the 

predictive fitness function is neural networks, as they are very fast and very good at 

classifying human expressions. 

The goal of the proposed research is to determine the effectiveness of using an 

IGA to generate realistic variations in facial expressions.  One challenge is to represent 

this complex high-dimensional problem such that it is manageable, but still capable of 



18 

 

 

 

generating meaningful results.  Another significant challenge is to incorporate the fitness 

prediction function in a way that optimizes the convergence of the algorithm. 
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Chapter 2 

Review of the Literature 

 

Background 

There is a rich stream of research focused on enhancing computerized facial 

animation.  There is also a large body of literature investigating the use of interactive 

genetic algorithms in generating creative works.     Our research combines these two lines 

of research.   This section presents an overview of the important research that forms the 

foundation of modeling and animation of human faces, as well as some examples of rule-

based systems for facial animation. Then a brief description of several research projects 

using IGAs to generate creative works is provided, including faces, music, and fashion.   

The music and fashion IGAs were included as good examples of IGAs using NNs as 

surrogate fitness functions. 

Modeling 

The first computer 3D animation of faces was accomplished by the pioneering 

research by Parke at the University of Utah in 1971 using a small number of polygons to 

model the face.  At the same time and at the same university, Gouraud was also 

developing the now widely-accepted Gouraud polygon shading algorithm, which Parke 

applied to achieve a level of realism to his face models (Parke and Waters, 2008).   Parke 

developed the first parameterized face model in 1974, with the goal of producing facial 
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animations quickly. It consisted of 900 polygonal surfaces and was animated by changing 

the location of points in the grid under the control of 50 parameters, 10 of which were 

used for speech.  Parke selected the control parameters of sentences by studying his own 

articulation and estimating the parameter values.   Parke's method of polygonal modeling 

of 3D faces laid the foundation for facial animation that is still primarily in use today.  In 

fact, the use of polygonal interpolation of blendshapes is common enough that it is built 

into the most common graphic programs, such as Autodesk Maya. 

The second most promising alternative to polygonal representation is the muscle-

based model.  In 1987, Waters developed a muscle-based facial model, using an 

approximation of the skull and jaw pivot covered with muscles.  This computation model 

required complex elastic models for compressible tissues.  The surface layer changed 

according to the underlying structure.  The model defined a dynamically changing set of 

contraction-relaxation muscle commands.  Although this system achieved a high level of 

realism, the calculations needed for tissue simulations take much longer than calculating 

changing polygonal surface shapes (Parke & Waters, 2008).   

Animation      

The concept of interpolating between face geometries using a polygonal face 

model was first introduced by Parke (Parke, 1972).  The terminology of blendshapes is 

commonly applied to the different face models, and the interpolation is often referred to 

as blending.  Animation is typically driven by some combination of manual selection of 

each change in expression, speech-driven animation, and motion-capture mapping. 
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Pearce, Wyvill, Wyvill, & Hill (1986) introduced speech-driven animation for a 

facial mesh.   A typed set of phonemes was input and mapped to control parameters to 

produce the animation sequence.  Phonemes were defined with values for segment 

duration, segment type, jaw rotation, mouth width, mouth forward-back, lip width at 

corners, mouth corner coordinates, lower lip tuck, upper lip raise, and teeth offsets.  They 

used non-linear interpolation between the phonemes, relying on the type of segments to 

regulate transition speed. 

Cohen and Massaro (1993) further improved the speech-driven technique by 

incorporating dominance and blending functions into the control parameters.  These 

functions captured differences in offset, duration, and magnitude based on coarticulation, 

or the changes that are dependent on the preceding and following phonemes.  For 

example, the lips round at the beginning of the word "stew" in anticipation of the 

following vowel segment.  The dominance function for the word "stew" would have low 

dominance for the "s" and "t" as compared to "u" for the lip protrusion control parameter.  

The "u" has a low rate value causing its dominance to continue forward in time from the 

vowel.  The tongue angle control parameter has equal dominance for "t" and "u."  

Cassell et al. (1994) developed a model for synchronizing speech, intonation, 

facial expressions, and hand gestures in a rule-based system.   Their facial expressions 

focused on conversational signals, such as emphasizing a point being said, or regulating 

the flow of speech. Variables related to facial expressions included speed of head 

movement, gaze direction, duration of eye contact, and speed of eye blinks.   An example 

of such a rule is that the speaker turns to look at the listener to relinquish control of the 
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conversation.  The results look good but the system generates the same expression in any 

situation.  

A significant amount of research followed the above works to derive rule-based 

emotional aspects to a dialogue.  These rule-based systems are based on psychological 

research into emotions, such as Ortony et al.'s theory of appraisal.    

Rosis, Pelachaud, Poggi, Carofiglio, and Carolis (2003) provided research toward 

automating the emotional component of speech based on a model that emotions are 

driven by beliefs and goals, and modified by personality and culture.   Their dynamic 

belief network combined a belief network that represented the agent’s mental state, and a 

network that monitored emotional triggers to another state.  The belief network comprises 

three types of nodes: belief nodes, goal nodes, and goal-achievement nodes.  Weights 

were associated with goal-achievement nodes as a function of the agent’s personality.    

The system simulated how emotions are triggered and decay over time.   However, there 

were no variations in specific emotional expressions. 

Bui, Heylen, Nijholt, and Poel (2001) presented a fuzzy rule based system to map 

emotional states to facial expressions.  They described six channels of facial movements 

which may have conflicts with one another: manipulators to satisfy biological 

requirements, lip movements for phonemes, conversational signals to emphasize speech, 

emotional displays, gaze movements, and head movements to support eye contact or to 

point to something during the conversation.  The dominance model of Cohen and 

Massaro (1993) was used for co-articulation of the phonemes.  Movements from the other 

channels were combined, and conflicts in parameters were resolved with those of higher 
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priority dominating the ones with lower priority.  The emotional component consisted of 

the six basic emotions described by Ekman and Friesen (1978), and could be varied by 

intensity.  Consider the example of smiling while speaking the word "hello."  Normally, 

the phoneme "o" requires a pursed shape of the lips while the smile requires the lip 

corners to be pulled outward.  The speech phoneme will have the higher priority, unless 

the speaker is so happy that the words are not spoken naturally.   Variations in emotional 

expression occurred in the mouth area with respect to the interaction of emotion and 

speech.  

Ho and Huang (2004) developed a facial modeling system using a “coarse-to-

fine” genetic algorithm.  They used a GA to acquire the 3D coordinates of control points 

of a face image.  The control points can then determine the 3D facial model based on the 

topological and geometric descriptions of the generic facial model.  Thus, the input to the 

system is a 2D image, and the output is a 3D facial model.  The topology of the 3D facial 

model is a set of well-designed triangular polygons that are constructed by control points.  

The topology is described as M = (V,U,T) where V is the set of all coordinates for all 

control points and vertices, U is a set of functions describing the weighted linear 

combination of neighboring control points, and T is the set of control points and 

curvature parameters for each vertex.  The geometric values are obtained from a set of 

training facial models.  These include all the 3D coordinates of control points, all of the 

curvature parameters for every vertex generation function, all the weights in the 

interrelationship functions of set U, and the statistical model ratios.  The ratios include 

data such as the distance between the two far corners of the eyes.  The GA is used to 
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obtain a good set of geometric values for the generic facial model.  The fitness function is 

the Euclidean distance between the feature vector obtained from the training images to 

the feature vector of the GA chromosomes.  The feature vector is the concatenation of the 

NFDs of three projections at different angles.  The chromosome has to be decoded, a 

facial model constructed, three facial models projected, and the NFDs of the three models 

computed to obtain the feature vector. 

The chromosome was encoded as a vector ((m1, d1), (m2, d2), …, (mn, dn)) with 

2*n parameters, where n is the number of control points, mi is an integer from 0 to 26, 

and di is an integer from 1 to Npart, i ranges from 1 to n, mi is the moving direction in 3D 

space, and Npart is the partition number of search space.    A single-layered facial model 

consists of 24 control points and 33 vertices, while a two-layered model consists of 24 

control points and 145 vertices.   

The researchers present coarse-to-fine as global and local searches, respectively.  

They use a parameter radius of the search space as a tuning parameter.  Several 

experiments were performed, and success was measured by the relative error and 

convergence time of the coarse-to-fine GA as compared to the standard GA. 

Interactive Genetic Algorithms 

IGAs have a history of artistic image creation, including graphic art and 

animation, 2D facial images, lighting, and virtual reality spaces (Takagi, 2001).    The 

specific technique of using a NN surrogate function with a large population has often 

been used in the music domain to evolve sequences of music. 
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Halim and Al-Fiadh (2006) developed an interactive genetic algorithm to assist 

victims in identifying criminals by evolving facial components based on user feedback.  

The chromosome was comprised of six genes representing background, forehead, 

eyebrows, eyes, nose, and mouth.  The alleles contained data regarding the size and 

location of the face part.  The initial population was 16 individuals.   The witness chose 

the best composite, and rated each face part.   A fitness function using these ratings was 

applied to the population, and eight individuals were selected for mating.  The less fit 

individuals were eliminated.   Different crossover and mutation probabilities were used 

for each face part based on the provided rating.   Each of the eight mating individuals was  

crossed with the selected individual to generate 16 offspring.   The algorithm terminated 

when the witness was satisfied with the image or after 15 generations.    

Tokui (2000) used a multilevel neural network as a fitness approximation function 

to evolve music composition.  The system maintained two populations, one of which 

consisted of short pieces of rhythms, and the other represented sequences of the rhythm 

pieces.  The two populations evolved separately.  The NN was given the elements of the 

GA genotype as input and the estimated fitness value as output.  The NN learned through 

these examples how a user was likely to rate a given individual.  By choosing only 

individuals with a high NN output score, only most likely candidates were presented to 

the user for evaluation.   

Sun, Gong, and Li (2009) used a support vector neural network as a fitness 

approximation function in the fashion design domain.  They used a small population size 

of 8 to compare the performance with a standard IGA using only human evaluation.  
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Their IGA used tournament selection with size 2, one-point crossover with a probability 

of .85, and one-point mutation with mutation probability of .05.  Results showed that the 

use of the fitness approximation function reduced the time until convergence by 40% and 

the user satisfaction with the results were greater.  These results were more apparent as 

the population size increased.  

An example of large parameter GA that uses a subjective fitness function is the 

music composition by Dahstedt (2007).  He used a representation based on recursive 

binary trees.  Each leaf of the genome tree contained a note or a list of notes.  The 

branches either concatenate or merge the notes into larger musical structures.  For each 

note, information is kept for onset time, pitch, amplitude, duration, and articulated 

duration.   Each piece was limited to 15 seconds.  Since notes can be full notes, quarter 

notes, half notes, or one/sixteenth notes, the number of leaf nodes in the genome tree 

varied significantly.   Clearly, the search space is very large.  Three approaches were used 

to initialize the population.  First, all the parameters were randomly generated.  Second, 

stored genomes from previous human-evaluated evolution runs were used.  Third, music 

input from a keyboard was translated into a tree structure.   Populations were between 25 

and 50, and ten generations were used for the subjective GA.  Several rules were 

developed to weed out pieces that were not likely to be rated very well by the human.  

These rules were based on observation and statistics gathered from the interactive 

selection process and perform the role of a surrogate fitness function.  The authors 

concluded that the output was structurally complex and musically convincing. 
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Measuring Animation Quality 

 It is important to be able to objectively evaluate the quality of facial animation.  

Facial expressions are an important subject not only in computer animation field, but also 

in the cognitive sciences, where it has been studied extensively over the last few decades.   

Wallraven, Breidt, Cunningham, and Bulthoff (2005) presented a framework in which 

psychophysical experiments evaluate the perceptual quality of facial animations. To do 

so, they drew upon a large body of research in the field of psychology, psychophysics, 

and neurophysiology.  They demonstrated that experimental methods from the perceptual 

sciences allow defining and measuring the perceived realism of computer-generated 

images.    

 The methodology presented uses untrained participants to judge aspects of the 

avatar expressions.   Since humans are sensitive to a large range of subtle aspects of 

facial motion, animation evaluations must include a large enough set of perceptual 

evaluation criteria to fully capture why an expression is judged to be realistic.   The most 

fundamental test is recognition of expressions.  Other important measures that have been 

identified are intensity, sincerity, and typicality of the expression.  Finally, the time 

required to identify or rate the expression was taken into consideration.  These measures 

enable the formation of a complete picture of the perceptual processing of facial 

expressions.  To demonstrate the effectiveness of psychophysical experiments, the 

researchers used several different variations of generating the avatar.  Participants were 

presented with an animation sequence repeatedly until they pressed an indicator that they 

were ready to evaluate the expression, yielding a measure for reaction time.    



28 

 

 

 

 The collected data were analyzed using standard analysis of variance methods, 

which yield the statistical significance of each variable for the different measures.    

Variables included animation style, and changes in shape, texture, motion, timing, and 

frequency.   The researchers demonstrated that this technique can be used to indicate the 

perceptual impact of different information channels, revealing what the animator needs to 

focus on to achieve perceptual realism.    
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Chapter 3 

Methodology 

 

Overview 

 The proposed research is based primarily on genetic algorithms and neural 

networks, both of which are well-established machine learning methods.  Before 

describing the specifics of the proposed project, the concepts that form the basis of the 

design decisions are described in the following section. 

Genetic Algorithm 

GAs belong to the class of stochastic search methods.  Whereas most stochastic 

search methods operate on a single solution to the problem, GAs operate on a population 

of solutions. 

A GA is a process that mimics evolution.  The canonical GA evolves a population 

of chromosomes, each of which represents a potential solution to a problem.  The genes 

of the chromosome encode a particular element of the problem.  The possible values of 

the genes are called alleles.  The fitness of each chromosome determines how likely it is 

to be selected for reproduction.  The operations that are applied to create the next 

generation of chromosomes include selection, crossover, mutation, and replacement.  

Selection selects individuals from the current population for mating.  Crossover consists 
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of exchanging material between two chromosomes.  Mutation consists of replacing the 

value of a randomly chosen gene.  Replacement merges the current population and its 

offspring to create the next generation.   

There are no strong conclusions on when a genetic algorithm will outperform 

traditional methods (Mitchell, 1998).   If the search space is large or not well structured, 

or if the fitness function is noisy, and if a global optimum is not required, GAs can be 

effective.   A GA performs a parallel search guided by a fitness function. There are 

several parameters that can be adjusted to improve performance. Two components unique 

to each problem that are critical to the success of a genetic algorithm are genotype 

(chromosome representation) and the fitness function used to guide the evolution of the 

population of potential solutions.   Other GA parameters have guidelines backed by 

research, but are also highly dependent on the specific problem.  

The genes of the chromosome (genotype) in a population must map to a potential 

solution (phenotype).  The size of the solution space tends to increase with each 

additional gene in the chromosome, but a many-to-one mapping mitigates this effect. If 

the number of genes is too small, the solution space may be inadequate to produce an 

acceptable solution.  If the number of genes is too large, it may take too much time to 

evolve an acceptable solution.  The design of the GA must consider the best balance 

between these two issues. 

When a predictive fitness function is used together with the original fitness 

function, the fitness function to be optimized is f(X) if the original fitness function is 

used, and f(X)+E(X) if the predictive fitness function is used, as depicted in the equation  
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where E(X) is the approximation error of the predictive function.  The error in the 

predictive function is deterministic once it is constructed and so cannot be reduced by 

resampling.  Instead the error has to be addressed by using the true fitness function rather 

than the approximation function.  The design of the GA must consider the best balance 

between cheap but inaccurate predictive evaluations and expensive but true fitness 

evaluations. 

 The issue of integrating the two fitness functions is called evolution control or 

model management.  The two basic categories are individual-based evolution control, in 

which a subset of the population are evaluated with the true fitness function in every 

generation, and generation-based evolution control, where all individuals are evaluated 

with the true fitness function in a subset of generations.   

 One common method of individual-based evolution control is that all individuals 

are evaluated using the predictive function, and then a number of individuals are chosen 

to be re-evaluated using the true fitness function.   There are several methods that have 

been used for determining which individuals are re-evaluated.  The selection can be 

random, it can be based on the best individuals according to the predictive function, it can 

choose the most uncertain individuals, it can choose the best from a cluster of individuals, 

or it can use a combination of quality and uncertainty.  If we assume the prediction 

function is better than a random guess, it is natural to choose the best individuals to be 
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reevaluated.  Usually, the number of individuals to be reevaluated is predefined and fixed 

during the evolution.   

 The design of the approximation function must balance the trade-off between 

approximation accuracy and model complexity. The model complexity should be 

controlled to avoid overfitting. In the case of neural networks, structural optimization can  

improve the accuracy of the predictive fitness function significantly.  Proper training data 

can also have a significant effect on the accuracy of the predictive function. 

A GA is sensitive to parameters such as population size, crossover and mutation 

probabilities.    General guidelines for GA parameters were proposed by Harrold and 

Grefenstette, 1986.  Several researchers have performed research on how to further 

optimize details of the GA, including population size (Harik, Cantú-Paz, Goldberg, and 

Miller, 1999), crossover techniques (De Jong and Spears, 1992), and selection methods 

(Goldberg and Deb, 1991).  There is interdependence among GA parameters so they 

cannot be optimized independently.    In particular, population size, crossover, and 

mutation rate interact nonlinearly with one another (Mitchell, 1998). 

Initialization of the population is usually random but one may seed the population 

with individuals that meet some criterion.   The evolution of new generations continues 

until an individual appears that meets the fitness criterion or until a predetermined 

maximum number of generations have been met.  The fitness for an individual is usually 

determined algorithmically, using a mathematical optimization.  In the case of a 

subjective goal, a human may be used to supply the fitness function.   
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The selection step in a GA reflects the evolutionary principle that the most fit 

individuals survive and reproduce.  It is usually a random process biased by the fitness 

value so that the most fit individuals are more likely, but not guaranteed, to mate. 

Combining the parents’ genes using a crossover function produces a child 

chromosome. The child may also be modified with a random mutation with a specified 

probability that is typically quite small.  In the canonical GA, these operations mimic 

what occurs in natural organisms.  Often, natural genetics is more of an inspiration than a 

constraint, and many domain-specific operators have been invented.    

In creating the next generation, some old individuals, usually the most fit, may 

survive intact, creating a generation gap between them and the younger individuals.  The 

size of this gap, along with the size of the population, affects the speed of the search.  A 

large population with no generation gap will cover the most ground, but might lose the 

best individual.  A small population with a large gap will not lose the best individuals, but 

will take more time to explore the solution space.  

Neural Network Classification 

Neural networks can be trained to perform complex non-linear functions, such as 

pattern recognition.  Our research employs six feedforward neural networks trained with 

back propagation.  Input vectors (FACS intensity values) and the corresponding target 

output (emotion) were used to train the networks.    The quality of the NNs was crucial to 

the effectiveness of the IGA system.   

The problem of learning in a neural network can be framed as minimization of an 

error function E (Bishop, 1995).  The error is a function of the weights and biases in a 
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network, which can be grouped together into a single W-dimensional weight vector 

w1..wW.   One of the effective training algorithms is a variation of gradient descent called 

scaled conjugate gradient.    

Gradient Descent 

The gradient descent algorithm searches along the direction of steepest descent, 

and the weights are updated using  

 

where η is the learning rate, and provided it is sufficiently small, the value of E will 

decrease each step leading to a minima where the vector ∇E=0.   There are problems with 

convergence with the simple gradient descent algorithm, however.  It is difficult to find a 

suitable value for η.  The error surface may contain areas where most points do not point 

towards the minimum, resulting in a very inefficient procedure.   The basic algorithm can 

be enhanced by adding a momentum term µ to smooth out the oscillations, and by 

updating the learning rate (Bishop, 1995). 

Conjugate Gradient Descent 

 Another issue with gradient descent is choosing a suitable search direction.  

Suppose we have minimized along a line given by the local gradient vector.   Choosing 

successive search directions can lead to oscillations while making little progress toward 

the minimum.   For this problem, conjugate gradients are employed.   Suppose a line 

search has been performed along the direction dr starting from point wr to give an error 
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minimum along the search path at the point wr+1.  The direction dr+1 is said to be 

conjugate to the direction dr if the component of the gradient parallel to the direction dr, 

which has been made zero, remains zero as we move along the direction dr+1.   It can be 

shown that the minimum of a general quadratic error function can be found in at most W 

steps using conjugate gradients (Bishop, 1995). 

Scaled Conjugate Gradient 

 A basic problem with line search is that every line minimization involves several 

error function evaluations, each of which is computationally expensive.  The procedure 

also involves a parameter whose value determines the termination criteria for each line 

search.  The performance is sensitive to this value.  The scaled conjugate gradient 

algorithm avoids the expense of line minimization by evaluating Hdj where H is the 

Hessian matrix comprised of the second derivatives of the error 

 

 However, it is necessary to ensure that H is positive definite so that the 

denominator doesn’t become negative and thus increase the error.  Adding a multiple of 

the unit matrix does this 

H + λI 

where I is the unit matrix and λ ≥0 is a scaling coefficient.   The formula for the step 

length is then given by 
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where dj is the direction at step j, and gj is the gradient vector at the jth step orthogonal to 

all previous conjugate directions.  The suffix j on λj reflects that the optimum value for 

this parameter can vary on each iteration.   Techniques like this are well known in 

standard optimization where they are called model trust regions.  The model is only 

trusted in a small region around the current search point.  The size of the trust region is 

controlled by λj so that for large λj the trust region is small.   In regions where the 

quadratic approximation is good, the value of λj should be reduced, while if the quadratic 

approximation is poor, λj should be increased.  This is achieved by considering the 

following comparison parameter 

 

The value of λj is then adjusted with 

If   > 0.75 then λj+1 =  

If  < 0.25 then λj+1 = 4λj 

Else λj+1 = λj 

If  < 0, the step would actually increase the error so the weights are not updated, but 
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instead the value of λj is increased and  is re-evaluated.  Eventually an error decrease 

will occur since once λj becomes large enough, the algorithm will be taking a small step 

in the direction of the negative gradient.  The two stages of increasing λj if required and 

adjusting λj are applied in succession after each weight update (Bishop, 1995). 

Hidden Layers 

 There is no theoretical reason to ever use more than two hidden layers, and for the 

majority of practical problems, there is no reason to use more than one hidden layer.   

The problems with multiple hidden layers include longer training times, the gradient is 

more unstable, and the number of false minima increases dramatically (Masters, 1993). 

 Long training times, overfitting, and loss of generalization can be caused by too 

many hidden neurons.   The network may learn insignificant aspects of the training set 

that are irrelevant to the general population.   Too few neurons and the network is not 

able to learn the pattern at all.     The number of required neurons is dependent on the 

complexity of the function to be learned, and is usually discovered through 

experimentation. 

Neural Network Costs 

A detailed analysis of the scaled conjugate gradient algorithm by the researcher 

who introduced the algorithm (Moller, 1993) shows that it has a calculation complexity 

of O(6N2) for each iteration, where N is the number of weights and biases in the network.  

The computational complexity of the neural network is affected by both 

informational complexity and neural complexity.  The informational complexity is the 



38 

 

 

 

number of examples required to approximate the function f within a given tolerance ε.  

The neural complexity is the number of neurons necessary to approximate f within ε.    

Baum and Haussler (1989) considered the number of training samples required 

for multilayer feed-forward networks.  For a network with M units and W weights, 

including biases, they gave an upper bound on the capacity of the network as 

 

where e is the base of natural logarithms.  They used this to show that, if some number N 

of patterns, given by  

 

can be learned so that 1-ε/2 are correctly classified, with 0 < ε <= 1/8, then there is a high 

probability that 1-ε future examples will also be correctly classified.   They further 

derived a rule of thumb that to correctly classify 1-ε of new examples requires a 

minimum number of training patterns of W/ε.  Thus, for ε = 0.1, one would need around 

ten times the training examples as there are weights in the network.  The Baum-Haussler 

rule of thumb is based on the worst-case bounds, so good generalization is possible with 

fewer training patterns. 

Our research project used a neural network comprised of 30 hidden neurons, 39 

input neurons, and 1 output neuron for a total of 1200 weights in the network.   The 

average number of iterations to reach convergence was 118, with a range from 105 to 127 

among the six networks. Using Moller's equation, the number of calculations would be in 

the neighborhood of 118 * 6 * 12002 (1.019X109) for a training run.   Our NNs used an 
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average of 793 training samples each (8.085X1011 calculations).  On a Macbook Pro with 

a 2.66 GHz Intel Core i7 processor, the running time of training a neural network was 

noticeable, at times taking as long as 30 seconds.  This was a relatively small amount of 

time in relation to the overall time required to build and use the IGA system since the NN 

training was initiated by the user as needed and not automatically executed by the IGA. 
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Specific Research Methods to be Employed 

IGA System Design Overview 

Our research used an interactive GA to generate realistic variations in facial 

expressions.  Given a target emotion, the IGA system evolves an animation sequence of a 

face expressing that emotion.     

The chromosome represents a sequence of n genes, each of which encodes a face 

model that comprises the complete set of AUs.  The genes are sequenced so that the ith 

gene represents the ith face model in the animation sequence.  The number of face 

models does not evolve, but is a parameter that can be set by the user.   

Since FACS does not incorporate temporal data, typical values were used for the 

rate of interpolation between two expressions, and for the duration of a static expression 

before beginning the next interpolation.    The face models are key-framed every four 

frames, with the first face model always being the neutral expression.  The last face 

model is repeated twice for eight additional frames to present a pause when looping the 

animation.   

Table 1: Chromosome Mapping of n genes 

Face Model 1 Face Model 2 … Face Model n 
AU11…..AU391  AU12….AU392  … AU1n..AU39n 

AUki=kth action unit of the ith face model 
 

In order to take advantage of the biodiversity in a large population, a surrogate 

fitness function in the form of a neural network was used to evaluate the entire 

population, and a subset of the most promising individuals according to the NN was 
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chosen for the user to evaluate.   The NNs were trained to evaluate a single facial 

expression.  Thus, the NN performs n evaluations on each chromosome, one evaluation 

for each face model.    

Consider a chromosome with n genes.  The chromosome is given a surrogate 

fitness value corresponding to how many of its genes are classified as the target emotion 

by the NN.   The inputs to the NN are the values of the facial action units for a gene. 

Table 2: NN Input/Output 

Happiness NN Classifier 
Input Output 

Face Model 1 AUs Y 
Face Model 2  AUs Y 

. 

. 

. 

. 

. 

. 
Face Model n  AUs Y 

 

The NN performs its fitness calculations on the genotype.  However, the user 

assigns a fitness value on the phenotype of the individuals most highly rated by the NN.    

The phenotype is an animation sequence of facial expressions as displayed by the 

graphics software.   The facial action units encoded in the gene map directly to 

blendshape control values.  Blendshape controls comprise the blendshape animation rig 

that is used to generate the phenotype.    The blendshape control values are constrained to 

allow a range of motion that is humanly possible.  A small number ns of animation 

sequences are displayed to the user for evaluation.   
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The evolution continues using conventional GA parameters until the user is 

satisfied with the results, the user aborts the run, or the maximum number of generations 

is reached. 

The genetic algorithm can be described as follows: given a target emotion, evolve 

an animation sequence that exhibits variations in the specified expression.  Initialize a 

large population with np individuals.  The NN evaluates every gene in every chromosome 

in the population.  The chromosome’s surrogate fitness value is calculated by totaling the 

surrogate fitness values of each of its genes.  A subset of ns of the most highly fit 

individuals according to the NN are chosen for subjective evaluation, with eight being a 

promising value for ns.   These eight genotypes are converted to phenotypes for display.   

The user assigns fitness values to the displayed animations.  The most highly fit 

chromosomes in the population are selected for breeding the next generation. 

Convergence occurs when the user is satisfied or when a fixed number of generations 

have been performed.   



43 

 

 

 

 
Table 3: IGA System Algorithm 

      1)  User selects target emotion to be expressed 

2)  Initialize large Face Model GA population with np individuals 

3)  Apply surrogate fitness function to total population 

4)  Generate phenotypes for subset of ns most-fit individuals 

5)  User evaluates phenotypes 

6)  Select mating population 

7)  Create next generation with crossover and mutation 

8)  Repeat from step 3 until convergence 

 

The primary activities that were performed to build the IGA system are listed 

below, and described in more detail in the following sections. 

Table 4: Primary Activities to Build IGA System 

1) Prepare the blendshapes and controls 

2) Define the genotype 

3) Map the genotype to the phenotype 

4) Define the constraints on genotype values 

5) Design the genetic algorithm  

6) Generate the phenotype 

7) Prepare the training example database 

8) Design the neural network 

9) Design the human-computer interface 

10) Implement GUI, genetic algorithm, neural network, and graphic software. 
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IGA System Design Details 

Prepare the blendshapes and controls 

Blendshapes are based on FACS to separate the facial movements into simple, 

distinct action units.  Blendshapes can be combined to create different expressions.  The 

blendshape controls change the weight of each blendshape.   They are often depicted 

graphically as a slider to enable a user to manually increase or decrease the effect of the 

desired blendshape.  In our project, a polygonal face model has 39 blendshape controls, 

each of which has a range between 0 and 1, where 0 is the value for the neutral 

expression.  

Define the genotype 

The chromosome is comprised of a user-selectable number of genes.  Each gene 

encodes an expression.  The genes are arranged in sequence so the ith gene encodes the 

face model of the ith keyframe in the animation. An expression is defined as a 

combination of facial action units based on the widely embraced FACS.  Thus, each gene 

is comprised of action units.  The facial action units define all visible changes that a face 

can perform.     

Although a subset of action units can be used to recognize emotions, the entire set 

is needed to generate the full range of variety.  It is a large problem, but previous research 

exists that defines a large chromosome to represent the face (Ho and Huang, 2001; 

Karungaru, Fukumi, and Akamatsu, 2007).    To control the size of the solution space,  

the number of gene components involved in the evolution is a subset of the AUs on the 

gene.  The AUs that are known to express the target emotion evolve, plus nr genes that 
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are chosen at random.  The number of random genes is a parameter that is set by the user.  

The remaining genes have fixed values for the neutral expression. 

The chromosome is encoded as a vector ( (AU11…AU391), (AU12..AU392), …, 

(AU1n..AU39n) ) where n is the number of face models, and AUki is kth action unit of the 

ith face model. 

Map the genotype to the phenotype 

The phenotype is an animation sequence of facial expressions in the Autodesk 

Maya 2010 graphics program.  Maya has an API for C++ capable of driving the 

blendshape controls used in animation.   After each new generation, the genetic algorithm 

provides the blendshape control values for n face models in ns animations from the allele 

values for n genes in the best ns chromosomes.   When determining the best 

chromosomes, the GA gives priority to the subjective fitness value if one exists.  

Otherwise, the surrogate fitness provided by the NN is used. 

The Maya script keyframes the blendshapes associated with the ns visible face 

model groups using the blendshape control values provided by the GA.   The values of 

the alleles map directly to the values of the blendshapes. Maya creates the animation 

phenotype by interpolating the blendshape values between keyframes. 

Define the constraints on genotype values 

Facial action units have limits on their values.  To eliminate impossible facial 

expressions, constraints are placed on how far up an eyebrow can rise for example.  The 
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constraints are placed on the blendshape controls.   A value of 1 is the maximum range of 

the facial action unit. 

Darwin claimed that all people express some emotions in the same ways in their 

faces.  There have been several studies conducted that support this claim with respect to 

the basic emotions (Matsumoto and Ekman, 2008).  Our genetic algorithm was optimized 

by selecting the specific facial action units for that target emotion and a small number of 

random action units to evolve.  All other action units retain the values for the neutral 

expression.   This eliminates a large range of useless solutions from evolving.    

Additionally, in the manually generated animations that are presented to the participants 

for comparison, only the specific facial action units for the target emotion were 

manipulated.   

 

Figure 1: FACS Coding of Fear (Matsumoto and Ekman, 2008) 
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Table 5: AUs of Basic Emotions (Matsumoto and Ekman, 2008) 

Emotion AU # FACS AU 

Anger 4 
5 and/or 7 

22 
23 
24 

Brow Lowerer 
Upper Lid Raiser or Lid Tightener 

Lip Funneler 
Lip Tightener 
Lip Pressor 

Disgust 10 
16 
22 

25 or 26 

Upper Lip Raiser 
Lower Lip Depressor 

Lip Funneler 
Lips Part or Jaw Drop 

Fear 1 
2 
4 
5 
7 
20 

25 or 26 

Inner Brow Raiser 
Outer Brow Raiser 

Brow Lowerer 
Upper Lid Raiser 

Lid Tightener 
Lip Stretcher 

Lips Part or Jaw Drop 

Happiness 6 
12 

Cheek Raiser 
Lip Corner Puller 

Sadness 1 
4 
15 
17 

Inner Brow Raiser 
Brow Lowerer 

Lip Corner Depressor 
Chin Raiser 

Surprise 1 
2 
5 

25 or 26 

Inner Brow Raiser 
Outer Brow Raiser 
Upper Lid Raiser 

Lips Part or Jaw Drop 
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Design the genetic algorithm 

Initialization 

 The search space is very large, and even a large population of 100 is relatively 

small in comparison.   In this circumstance, the initial population is very important, since 

it determines the starting point in search space.  A randomly generated initial population 

may provide the maximal variation and coverage.  However, if one wants to explore a 

certain neighborhood in the search space, it may be helpful to bias the initialization.  This 

is sometimes done with previously evolved individuals, human input, or predefined 

constraints (Dahlstedt, 2008).    

 The action units that express specific emotions are a well-defined subset of the 

complete set of AUs defined by the FACS.   The parts of the gene encoding the action 

units that express the target emotion will be referred to as the target gene components.  

The number of target gene components nt varies with each emotion.  In addition, a user 

selectable number nr of random gene components evolve.   The target gene components 

provide the predictable component of an expression, while the random gene components 

provide the random component.  By varying the parameter nr, the degree of randomness 

can be controlled.    

 During initialization, the target gene components and random gene components 

are given random values that represent the degree to which the corresponding action unit 

is activated.  The remaining gene components maintain standard fixed values. 
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 The population size is a configurable parameter, with 100 being used in most of 

our experiments. 

Selection 

The selection technique must be strong enough so that evolution is not too slow as 

to cause user fatigue or boredom, and yet not so strong that suboptimal individuals do not 

take over the population prematurely.  It is important to balance the exploitation and 

exploration conflict.  The slow growth rates that encourage thorough exploration may be 

impractical for an IGA.  Due to user fatigue, it is likely preferable to emphasize 

exploitation and reduce convergence time.  Since there are often multiple acceptable 

solutions in the facial expression domain, local optima are less of an issue.  

Fitness-proportionate selection often puts too much emphasis on exploitation of 

highly fit strings early in the evolution, causing them to multiply rapidly and prevent 

sufficient exploration (Mitchell, 1998).   Ranking and tournament methods have similar 

effects on selection, reducing the selection pressure when the fitness variance is high, and 

increasing it when the fitness variance is low.  

Tournament selection is more efficient than ranking.  The selection pressure can 

be adjusted by modifying the tournament size.  As the tournament size increases, the 

convergence time is decreased (Goldberg and Deb, 1991).  Additionally, it has been 

claimed that tournament selection achieves niching implicitly (Muhlenbein, 1989).  

Niching allows for two strings that are relatively equal in fitness to get relatively equal 
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samples, thus maintaining useful diversity and encouraging continued exploration.   It 

compensates for the tendency of a highly fit individual rapidly taking over the population. 

Our IGA system uses the tournament method to take advantage of the efficiency, 

adjustments, and niching aspects.   If two individuals have the same fitness value, with 

one being provided by the surrogate fitness function and the other being provided by the 

subjective fitness function, the one with the subjective fitness value wins the tournament.    

Replacement 

The most common replacement strategies are generational and steady state.  In the 

generational algorithm, the entire population is replaced each generation.  The steady 

state algorithm replaces only a few individuals in each generation.  The most common 

steady state replacement algorithms are replace-worst and replace-most-similar. 

Most GAs described in the literature are generational.   One technique that is 

common to a generational GA is called elitism, and keeps some of the most fit 

individuals in the successive generation.  Steady-state selection is useful in GAs where 

incremental learning is important, and in which members of the population collectively 

rather than individually solve the problem at hand.   

In our IGA system, generational replacement with elitism is used.   

Crossover 

Although single-point crossover is the most common in the literature, it has the 

disadvantages of having positional bias, being unable to combine all possible schemas, 

tending to preserve hitchhikers, and treating endpoint loci preferentially (Mitchell, 1998).  
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More aggressive crossover, such as 5-point or uniform, increases the diversity but also 

disrupts the desired schema from forming.  Two-point crossover reduces positional bias 

and the endpoint effect, but there are still schemas that two-point crossover cannot 

combine.   Some researchers promote the use of parameterized uniform crossover, in 

which an exchange occurs at each locus with a probability typically between 0.5 and 0.8.   

This has no positional bias but can prevent coadapted alleles from ever forming since it 

can be quite disruptive of the schema. 

In our IGA system, two-point crossover is used, and the crossover rate is 

configurable.   The crossover points occur between each gene so that the genes are 

indivisible units in the crossover operation.  

Mutation 

The mutation rate is very low, comparable to that used by other researchers.  

Mutation plays a minor role in maintaining diversity when the initial population is large 

enough.  With smaller populations, mutation is the primary mechanism for generating 

diversity.  Since the intent of using a surrogate function in the IGA is to enable a 

sufficiently large population, the traditional small mutation rate is used. 

Mutation is applied to each gene with a probability pm.  When it is determined that 

a chromosome should undergo mutation, one of its alleles is chosen at random and given 

a random value across all of its genes. 
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Population Size 

The population must be large enough to contain enough building blocks for a 

high-quality solution, and yet not so large that time is wasted processing unnecessary 

individuals and contributing to user fatigue in IGAs.  The size is dependent on the 

number of desired alleles in the initial population, the size of the problem, and the 

selection intensity (Harik, Cantu-Paz, Goldberg, & Miller, 1999).    

Ensuring there are a sufficient number of building blocks in the initial population 

is essential to a successful GA (Goldberg, Sastry, and Latoza, 2002).  Subsequent steps of 

ensuring the growth of superior BBs, the mixing of BBs, and good decisions among 

competing BBs are all based on having an initial adequate supply (Goldberg, 2002).  

Our IGA population size is a configurable parameter np, which must be large 

enough to ensure a sufficient number of building blocks.  The initial population is 

significantly larger than the typical IGA, which tends to use small populations to reduce 

user fatigue.   In our IGA, user fatigue is addressed by selecting a subset of eight to be 

evaluated by the user, while the faster surrogate fitness function is applied to the total set.  
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Table 6: IGA Design Parameters 

Initialization Random values given to a subset nt + nr 
alleles, where nt refers to the number of 
target emotion alleles, and nr refers to the 
randomly selected alleles. 

Selection Tournament of size 8, with subjective 
fitness given priority over surrogate fitness 

Replacement Generational with elitism. 

Crossover Two-point crossover with probability pc 
where the crossover points are between 
genes.  

Mutation Random value given to random allele in  
set of genes with probability pm  

Population Size np  configurable 

Termination User satisfied (convergence), user aborted, 
or 20-generation limit. 

 

Generate the phenotype   

The phenotype of the IGA is an animated sequence of facial expressions.  The 

animation is generated in the Autodesk Maya 3D Animation Software.  The alleles of the 

gene are mapped to blendshape control values, which are used by the Maya Embedded 

Language (MEL).  Maya makes an API to this scripting language available to C++.    

 Prepare the training example database 

The NN that serves as the surrogate fitness function must be trained with 

examples for the target expression.  It is common for research in facial expressions to 
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focus on the six basic emotions as described by Ekman and Friesen (1978).  These basic 

emotions are happiness, sadness, disgust, anger, fear, and surprise.    

There are twelve separate databases, one for positive and one for negative 

samples of each of the basic emotions.  The database entries correspond to the alleles of a 

gene, which represent the facial action units of each face model.  The databases were 

initialized with enough manually generated examples to attain at least an 80% success 

rate in classifying an expression.   But in the initial runs, the random gene components 

created unrealistic expressions since the NNs were trained only to classify emotion.  The 

NNs were not differentiating between valid and invalid expressions. A mechanism was 

introduced to add samples of realistic and unrealistic expressions to the NN training 

databases from the individual genes that were generated by the IGA.   The user could 

choose to step through the individual face models of any animation and add one or more 

to the positive or negative training database for the target emotion.  The user could also 

choose to retrain the NN during the IGA.   

It should be noted that a chromosome corresponds to a sequence of genes, so the 

NN is evaluating the genes of the chromosome.  The fitness value of the chromosome is 

the sum of the fitness value of each of its genes.  

Design the neural network 

Neural networks have been shown to be effective in classifying human facial 

expressions.  NNs are a very powerful and general framework for representing non-linear 

mappings from several input variables to several output variables (Bishop, 1995).  The 

mapping is based on parameters that are learned from a set of training data.  A neural 
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network classifier can be seen as a function approximation, where the approximated 

functions are the probabilities of membership of the different classes expressed as 

functions of the input variables (Bishop, 1995).  

Facial expression classification is a high-dimensional problem.   As the number of 

input features increase relative to the size of the training samples, the classifier loses its 

ability to generalize.  In the most extreme case, it becomes a look-up table that only 

matches patterns it has seen before.  Another problem has been called 'the curse of 

dimensionality' in that the number of required examples grows exponentially with the 

number of input features.  Thus, the feature extraction step has a profound effect on the 

pattern recognition system of high-dimensional data (Bishop, 1995).   

When working with video sequences, techniques for reducing the dimensionality 

of the data include optical flow, principal component analysis, local feature analysis, and 

Gabor wavelet representations (Donato, Barlett, Hager, Ekman, and Sejnowski, 1999).   

The dimensionality of the data using these techniques is comparable to the dimensionality 

of our chromosome representation, which is still rather high.  

It has been demonstrated that a subset of facial features contribute the most to the 

recognition of emotion, especially the eyes, eyebrows, and mouth features (Cunningham, 

Kleiner, Bilthoff, & Wallraven, 2004).   Initially, the input to the NN was the alleles most 

relevant to the recognition of emotion.   Unfortunately, this resulted in a population of 

genes that were comprised of valid values for the 17 NN inputs, but unrealistic values for 

the remaining alleles.  The input was changed to include all the alleles, and the NN was 

trained to recognize valid emotional expressions. 
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Table 7: AUs Relevant For Emotion Recognition 

AU # FACS name 

1 Inner Brow Raiser 

2 Outer Brow Raiser 

4 Brow Lowerer 

5 Upper Lid Raiser 

6 Cheek Raiser 

7 Lid Tightener 

10 Upper Lip Raiser 

12 Lip Corner Puller 

15 Lip Corner Depressor 

16 Lower Lip Depressor 

17 Chin Raiser 

20 Lip Stretcher 

22 Lip Funneler 

23 Lip Tightener 

24 Lip Pressor 

25 Lips Part 

26 Jaw Drop 

 

Initially, we planned to use Matlab as the environment for the neural network 

classification.  However, the student version of Matlab does not have an API for calling 

the Matlab scripts from an external program.  Instead, we used the Fast Artificial Neural 
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Network Library (FANN), which was developed at the University of Copenhagen and is 

now available as an open source library (Nissen, S., 2003). 

There were six neural networks trained for binary classification of each of the 

basic emotions, using a small proportion of positive examples.   Each NN has 39 inputs 

and 1 output.   

The goal underlying the network design is to discover the simplest network 

architecture possible so that overfitting is avoided, and generalization is maximized.  

Bishop (1995) refers to this as finding the balance between bias and variance.  The 

procedure is to start with a network that is too small to learn the problem, and continue 

adding hidden neurons (and if necessary, hidden layers) until the error function is 

acceptable, and there is insignificant improvement from the previous trial. 

Our final NN configuration had a single hidden layer and 30 hidden neurons.  The 

NNs use the scaled conjugate gradient training algorithm, with MSE as the performance 

function.   

Design the human-computer interface 

The eight chromosomes with the highest fitness value as determined by the 

surrogate fitness function are converted to phenotypes and presented to the user.  The 

user evaluated each of the eight animation sequences using discrete values from 1 to 10.  

The use of a small range of values reduces user fatigue since it is difficult for users to rate 

small differences among objects (Ohsaki, Takagi, and Ohya, 1998).    

The practical number of generations when using an interactive GA is in the range 

from 10 to 20.  The user identifies when a satisfactory solution is achieved.  If the 
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evolution is not producing promising candidates, the user may stop early and declare 

failure to converge.  Otherwise, at the end of 20 generations, the user identifies whether 

the most-fit candidate is acceptable. 

Implement GUI, genetic algorithm, neural network, and graphic software. 

The IGA system requires a framework to manipulate representations of 3D facial 

models so that they can be modified by a genetic algorithm, evaluated by a neural 

network, and displayed with an interactive graphical user interface (GUI).  The GUI is  

capable of gathering input from the user and providing output for the genetic algorithm 

populations, the neural network training databases, and the statistics necessary for 

evaluating the effectiveness of the system. 

The genetic algorithm was implemented with C++.  C++ was chosen since it has 

an interface with the Maya graphics software.   The Maya API provides the ability to 

create windows that can display the face models and animation sequences.   C++ also has 

open source libraries available for the neural network.   The NN library that was used is 

called Fast Artificial Neural Network (Nissen, S., 2003). 
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Table 8: Major Software Components of IGA System 

 

• genetic algorithm 

• neural network 

• database of training examples 

• graphic animation software 

• database of predefined blendshapes with controls 

• interactive GUI 

 

 

Measuring the Quality of the IGA System 

The purpose of this research is to investigate the effectiveness of an IGA in 

generating credible variations in facial expressions.  An IGA's effectiveness is measured 

by satisfaction with the end results, and acceptable user fatigue.  

Convergence Analysis   

User fatigue is the physical and psychological burden inherent in evaluating 

solutions over a long period of time.   It is directly correlated with the number of 

evaluations conducted and the rate of successful convergences. 

The effectiveness of the IGA is dependent on the effectiveness of the surrogate 

fitness function.   The questions to be answered are “did the surrogate fitness function 

improve time to convergence, and if so, by how much?”   The answers indicate whether it 

was worth the additional effort and complexity to introduce a surrogate fitness function.    
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There are many examples in the literature where the surrogate fitness function exerted a 

significant improvement on convergence. 

It is intuitive that the higher the fidelity of the approximation function, the more 

likely the user will be satisfied with the population subset chosen for subjective 

evaluation, thus reducing convergence time.   If the error of the approximation model is 

large, then convergence time will be large.   Therefore, it is possible to determine the 

quality of the approximation function from the relationship between the fitness values 

provided by the approximation and those provided by the user.   The model error can be 

estimated as follows: 

 

 

where k is the kth generation, p is the population size, yuser is the fitness value 

provided by the user, and ynn is the fitness function provided by the neural network 

 

 where H is the number of hidden nodes, n is the number of inputs, wij is the 

weight between the input layer and hidden layer, vj is the weight between the hidden 

layer and output layer, and θ(z) =  
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Participant Statistics 

It is important to evaluate the quality of the IGA system objectively.  This has 

been done in the facial animation literature by using a method from the psychological and 

behavioral sciences that is designed to measure human perception (Cunningham, Kleiner, 

Bulthoff, and Wallraven (2004); Wallraven, Breidt, Cunningham, and Bulthoff, 2005).   

Psychophysical experiments can be used to measure satisfaction with the animation 

sequences.   The experimental data to be analyzed was collected in the form of 

questionnaires that are completed by participants.   Examples of questions that have been 

asked in facial animation evaluation include identification, credibility, intensity, aesthetic 

preference, sincerity, and naturalness.   It has been shown that all of these criteria, as well 

as reaction time, contribute to the perceived realism of the animation.   

The most important task is to identify the expression from a list of possible 

expressions, with an option for none of the above.   The non-forced choice methodology 

avoids inflated accuracy ratings found in the absence of a ‘none of the above’ option and 

avoids the subjectivity associated with free descriptions (Cunningham, Kleiner, Bilthoff, 

& Wallraven, 2004).  In contrast to the other questions, identification provides an 

objective qualitative criterion. 

Intensity and sincerity reflect a higher-level impression of facial expressions.  The 

ratings are of particular interest in areas such as virtual sales, where it is important to 

have convincing facial expressions.    



62 

 

 

 

Participants were asked to judge naturalness as something that people normally 

do.   Additionally, any strange artifacts in the graphics should also be regarded as 

unnatural. 

Aesthetic preference is evaluated by showing the participant a manually created 

animation sequence and an IGA created sequence side-by-side.   Participants are asked to 

answer the question "which sequence captures the essence of the expression better?" 

Although the question asks for a very subjective evaluation, participants are forced to 

choose one answer, which allows for a clean analysis of the data.  

The software components required for the statistics gathering are: 

• Graphic animation software 

• Interactive GUI 

• Statistics database 

 
After the IGA system generated the animation sequences, the statistics were gathered 
as follows: 
 
1) The set of animation sequences were selected for evaluation. 

2) A random animation sequence was shown to the participant. 

3) Participant provided answers for identification, intensity, sincerity, credibility, 

and naturalness. 

4) Repeated from (2) until all 24 sequences were shown. 

5) A pair of IGA/non-IGA animations was shown to participant. 

6) Participant provided answer for aesthetic preference. 

7) Repeated from (5) until all 12 pairs were shown. 

 

Each participant was thus asked to evaluate 36 animation sequences.  This is an 

arbitrary number and is fixed for consistency. 
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The animation sequences shown to the participants were selected from the IGA 

evolved solutions, as well as the examples that were manually created for evaluation.  

Participants did not know the source of the sample being evaluated.   Analysis of the two 

sets of data provides some evidence of the effectiveness of the IGA as compared to the 

standard method of animation.   

 Animation sequences were presented on a computer monitor.   The animation 

plays in a repeating loop with a pause at the end. The participant could replay the 

sequences as often as desired.   Below the animation window was a window containing 

the questions to be completed by the participant. Answers were recorded into a database 

for later analysis.  The time between the start of the animation and the start of the 

questionnaire completion was recorded. 

 The questions were defined onscreen as follows.   

1. Select the facial expression being displayed: 
o Anger 
o Disgust 
o Fear 
o Happiness 
o Sadness 
o Surprise 
o None of the above 

 
2. Rate Intensity on a scale from 1-7, with 1 being the least intense and 7 being the most 

intense.   Intensity is the degree to which an emotion appears to be felt.  For example, 
a low intensity anger appears as irritation, whereas a high intensity anger appears as 
rage. 

 
3. Rate Naturalness on a scale from 1-7, with 1 being the least natural, and 7 being the 

most natural.    An expression is natural if it is something people normally do.   Any 
artistic or technical faults in the animation should be considered unnatural. 

 
4. Rate Sincerity on a scale from 1-7, with 1 meaning the avatar appears to be faking or 

pretending, and 7 meaning the avatar appears to really mean the underlying emotion. 
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5. Rate Credibility on a scale from 1-7, with 1 being the least credible and 7 being the 

most credible.   Credibility reflects how believable or realistic the animation is. 
 

 
 
        Figure 2: Participant Evaluation Menu Screenshot 

 



65 

 

 

 

         Figure 3: Participant Preferences Menu Screenshot 

 

 

Neural Network Quality  

The quality of the NN classification can be determined by the receiver operating 

characteristics (ROC).  The ROC plot was generated from the confusion matrices and is 

used to compare classifiers during the design of the NN architecture.   

The ROC curve is a plot of the true positive rate  (TPR) versus the false positive 

rate (FPR) as the threshold varied.   The most frequently used performance measure in 

ROC analysis is the area under the ROC curve, or AUC.  The AUC of a classifier is equal 

to the probability that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance.  A perfect fit would cluster the points in the 

upper-left corner.    
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To further clarify the ROC, consider a classifier that maps instances to one 

element of the set {positive, negative}.   Given a classifier and an instance, there are four 

possible outcomes: 

 If the instance is positive and it is classified as positive, it is a true positive.   
 If the instance is positive and it is classified as negative, it is a false negative.   
 If the instance is negative and it is classified as negative, it is a true negative.  
 If the instance is negative and it is classified as positive, it is a false positive. 

 

Metrics are commonly taken from an associated confusion matrix.  Given a 

classifier and set of instances, a 2x2 confusion matrix is made using the counts of the 

correct and incorrect classifications of the instances.  The diagonal represents the correct 

decisions, while the non-diagonal entries represent the errors between the classes.  The 

true positive rate is then: 

tp rate ≈ true positives/ total positives 

and the false positive rate is: 

fp rate ≈ false positives/total negatives 

Points in ROC space are better the closer they are to the upper left corner.  

Classifiers on the left of the ROC graph may be thought of as conservative, in that they 

only make positive classifications with strong evidence.  They make few false positives, 

but may miss many true positives as well.  On the other hand, classifiers on the upper 

right side of an ROC graph may be thought of as liberal in that they make positive 

classifications on weak evidence so they classify nearly all the positives correctly but 
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have a high false positive rate.  Any classifiers below the y=x line would be worse than 

random guessing (Fawcett, 2003). 

The area under the ROC curve (AUC) has the statistical property that it is 

equivalent to the probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance.  It is effective as a scalar value 

to compare the performance of two classifiers.  The AUC is equal to the Wilcoxon 

statistic, which is used to test the hypothesis that the distribution of some variable (x) 

from one  population (p) is equal to that of a second population (n).   

H0 : xp = xn. 

If this null hypothesis is rejected, we can calculate the probabilities xp>xn, xp<xn, 

or xp ≠ xn.   For a classifier, we want p(xp>xn) to be as close to unity as possible.   The 

AUC effectively measures p(xp>xn) (Bradley, 1997). 

Formats for Presenting Results 

Genetic Algorithm Effectiveness 

The effectiveness of an IGA is measured by its convergence rate and user 

satisfaction with the results.   In each of our experiments, the IGA was run 10 times and 

the average number of convergences and average satisfaction rating given by the user is 

recorded.   Tables containing the results of the experiments are provided.   The summary 

data is also presented as a line graph. 

 The quality of the NN surrogate fitness function has a significant impact on the 

overall effectiveness of the IGA.   The TPR and FPR data are reported in tables for each 
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of the six NNs.   Also, the best and average surrogate fitness values for the final 

generation in an IGA run are presented along with the best and average subjective fitness 

values. 

Genetic Algorithm Quality 

 Results of the participant questionnaires are presented as totals and averages in 

table form.  The summary data is also presented as graphs. 

 

Resources  

The project was done on an Apple Macbook Pro running Mac OS X, version 

10.6.4.    This computer has a 2.66 GHz Intel Core i7 processor, with 4 GB of 1067 MHz 

DDR3 memory.  The XCode development platform was used, along with the open source 

library FANN for the neural network.  The graphics package that was used is Autodesk 

Maya 2010.   

Eight participants were used to answer the questionnaires evaluating the 

animations. 
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Chapter 4 

Results 

 

Data Analysis 

Genetic Algorithm Effectiveness 

In this section, the experiments and the results obtained are described.   In the first 

several experiments, one aspect of the IGA system was varied and the results were 

analyzed to find an optimal configuration.   Then a set of experiments using this 

configuration was used in a set of ten runs for each emotion to obtain a final consistent 

set of data. 

The first test of the IGA system enabled all of the AUs to be given random values 

during the population initiation.   With this configuration, all of the animations presented 

were grossly exaggerated and unrealistic.    It was clear that the number of AUs that are 

allowed to evolve must be limited. 

The set of AUs associated with the target emotion were established by Matsumoto 

and Ekman (2008), and are listed in Table 5.  The blendshape framework used for these 

experiments have a face model for each of the six basic emotions comprised of the set of 

AUs specific to that emotion.  When the blendshape for a given emotion has a value of 

0.5, all of the corresponding AUs are modified to display an intensity of 50%.   The 
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remaining blendshapes correspond to single AUs, and include the individual AUs of the 

target emotion. 

The next set of experiments restricted the AUs that could be given initial values to 

those associated with the target emotion, plus a limited number of random AUs.    With 

each run of the GA, the subjective fitness values decreased.  It was discovered that the 

initial set of NNs was giving a surrogate fitness value of 1 to every gene in the 

population. The surrogate fitness function was exhibiting no evolutionary pressure.  In 

this case, the larger population may have been a disadvantage since the subjective fitness 

function represented a smaller percentage of the population. In these experiments, the 

IGA was not converging.   It was theorized that the inability of the IGA to find an 

optimal area was most likely due to an inadequate surrogate fitness function.  The NN 

input consisted of the subset of 17 AUs that have been shown to identify emotion.  The 

AUs of a neutral expression have a value of 0. Since the AUs associated with the target 

emotion were initialized with random values, almost all of the genes were being assigned 

a surrogate fitness value of 1.   

To improve the performance of the GA, the NN configuration was changed to 

accept all AUs as input, and the training sample sizes were increased by an order of 

magnitude.  A large number of training samples were required to be representative of the 

entire face space.  The average set of training samples for the six NNs had 88 samples 

when the input dimension was 17.  The average set of training samples increased to 793 

when the input dimension was increased to 39.  
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The next set of experiments varied the number of random AUs that were allowed 

to evolve.   These were the first set of experiments with successful convergences, and 

were conducted using Happiness as the target.  Convergence is defined as the point where 

a sufficient fitness level has been achieved and is manually indicated by the user.  At this 

point, the individual with the highest subjective fitness value is saved for later evaluation.   

The initial experiment set the number of random AUs to 7.  Convergence did not 

occur within the ten trials that were conducted.   When the number of random AUs was 

set to 5, convergence occurred in 5 out of 10 runs.  When the number of random AUs was 

lowered to 3, convergence occurred in 3 out of 10 runs.  

  Due to research suggesting that 40% of the population needs to be evaluated with 

the more precise fitness function  (Jin, Olhofer, and Sendhoff, 2001), an experiment was 

conducted using a population of 20, with 8 being evaluated subjectively. When the 

number of random AUs was set to 5, convergence occurred in 3 out of 10 runs.  When the 

number of random AUs was lowered to 3, convergence also occurred in 3 out of 10 runs. 

The set of experiments using the Happiness target clearly revealed that the 

number of random AUs that were allowed to evolve was critical to the success of the 

IGA.  When the number of random AUs was too high (i.e. 7), none of the runs 

converged.  When the number of random AUs was too low (i.e. 3), the variations were 

often barely noticeable.   This is reflected in the fact that the average user satisfaction 

using 3 random AUs was significantly lower than when using 5 random AUs.  It is 

possible that the optimal number of random AUs may be different for each target 

emotion.  
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         Table 9: User Statistics: Happiness 

Target: Happiness 
Population Size: Variable 
Number Random AUs: Variable 
Tournament Size: 4 

Population 
Size 

Number 
Random 

AUs 

Convergence 
Rate 

Average 
User 

Satisfaction 
20 5 30% 3.2 

20 3 30% 2.8 

100 7 0% 1.0 

100 5 50%  3.8 

100 3 30%  2.9 
 

 The next set of trials was conducted with the target Sadness.   The first pair of 

trials varied the population size.   Convergence rates of 70% and 50% were obtained 

using population sizes of 20 and 100, respectively.    

 It was observed that the initial eight phenotypes presented usually resulted in 

several highly fit chromosomes.   But even when the IGA converged successfully, the 

majority of the phenotypes presented for evaluation had a very low subjective fitness.  

Moreover, with each successive generation, the highly fit chromosomes devolved into 

lower fit chromosomes.   

 The next set of experiments varied tournament size, based on the work of 

Goldberg and Deb (1991), which showed that an increase in tournament size would 

decrease the convergence time.   

When the tournament size was increased to 8, the fittest chromosomes quickly 

spread through the population. This was evident by the appearance of chromosomes with 
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a high subjective fitness value appearing multiple times in the phenotypes.   The 

undesirable chromosomes appeared to be weeded out more quickly.   It only took a few 

runs to determine if the population was improving.   As generations progressed, the 

number of phenotypes that were given high subjective ratings increased.  Interestingly, 

multiple highly fit individuals often appeared more than once, supporting the claim by 

Muhlenbein  (1989) that tournament selection inherently supports niching.    The 

convergence rate improved from 50% for the runs with a tournament size of 4, to 80% for 

the runs with a tournament size of 8. The average subjective fitness rating across the 

successful convergences was 3.6 with a tournament size of 4, and 4.5 with a tournament 

size of 8 (see Appendix B). 

      Table 10: User Statistics: Sadness 

Target: Sadness 
Population Size: Variable 
Number Random AUs: 5 
Tournament Size: Variable 

Population 
Size 

Tournament 
Size 

Convergence 
Rate 

Average 
User 

Satisfaction 
20 4 70% 5.7 

100 4 50% 4.9 

100 8 80% 6.6 
 

The next set of trials was conducted on the target Anger.   In three sets of ten runs, 

the tournament size was varied for each set. With a tournament size of 8, the most fit 

candidates quickly dominated the population as was seen with the sadness target.  

Successful convergence was reached in each of the 10 runs. 
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 With a tournament size of 6, the quality of the initial population was more 

important. It is noteworthy that if there were only one highly fit phenotype presented, it 

was less likely that the good genes would multiply.  Instead, the good chromosomes were 

more likely to be corrupted by the less fit chromosomes.   In general, the initial eight 

chromosomes needed to present at least 2 or 3 highly fit chromosomes for the highly fit 

chromosomes to spread throughout the population.  

 With a tournament size of 4, the highly fit chromosomes did not take over the 

population.   Indeed, the eight highest fit chromosomes usually did not increase their 

level of fitness significantly.    

            Table 11: User Statistics: Anger 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: Variable 

Tournament 
Size 

Convergence 
Rate 

Average 
User 

Satisfaction 
8 100% 7.0 

6 60% 5.0 

4 70% 5.3 
 

 The next set of experiments again varied population size, this time using a 

tournament size of 8 with the target disgust.    The larger population of 100 resulted in a 

convergence rate of 80%, and the smaller population resulted in a convergence rate of 

40%. 
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            Table 12: User Statistics: Disgust 

Target: Disgust 
Population Size: 20 
Number Random AUs: 5 
Tournament Size: 8 
Population 

Size 
Convergence 

Rate 
Average 

User 
Satisfaction 

100 80% 6.70 

20 40% 4.25 
 

 The initial trials for the targets fear and surprise used the most successful 

parameters that had been discovered in the previous experiments.   The population was 

100, the number of random AUs was 5, the crossover rate was .8, and the tournament size 

was 8.   The experiments produced unacceptably low convergence rates.   An analysis 

revealed that the NNs for these two emotions were producing near zero surrogate fitness 

values. This failure rate was addressed by attempting to improve the surrogate fitness 

function.  The NNs for these three target emotions were trained with significantly more 

training samples, but the surrogate fitness values remained invalid and convergence rates 

remained low.  Finally, an error was discovered that was corrupting the training samples 

for these three NNs.   Once the error was corrected, the IGA was performing well for 

these target emotions.     

To obtain a good consistent set of data across all six target emotions, a set of 

experiments was conducted using the most successful parameters that had been 

discovered.    Further discussion of IGA results throughout this paper will refer to this 

final consistent set unless otherwise indicated.  The IGA was run ten times for each 
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emotion for a total of 60 runs.  The average convergence rate was 85%, ranging from 

70% to 100%.  In every run, the user ended the IGA within 5 generations, both for the 

success and failure convergence cases.  In the cases of anger and fear, the IGA converged 

ten out of ten times.   Details of the individual runs can be found in Appendix A. 

Table 13: User Statistics: Final Consistent Set of Experiments 

Target: Variable 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 

Target 
Emotion 

Convergence 
Rate 

Average 
User 

Satisfaction 
Happy 70% 5.6 

Sadness 70% 6.0 

Anger 100% 7.0 

Fear 100% 8.5 

Surprise 90% 6.1 

Disgust 80% 6.7 
 

Surrogate and Subjective Fitness Analysis 

Data was also collected to compare the two fitness functions.  The average 

subjective fitness was calculated using the subjective fitness values for the eight 

chromosomes whose phenotypes were presented to the user for subjective evaluation.  

The average surrogate fitness was calculated over the entire population of chromosomes 

after the user ended the IGA run, whether convergence was successful or not.   Results of 
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each run are included in Appendix B.  The following discussion uses the averages of the 

ten runs contained in each table of Appendix B. 

For the seven successful convergence cases for happiness, the best subjective 

fitness values averaged 6.14 across the final ten runs, ranging from 6 to 9.  The 

corresponding best surrogate fitness values averaged 5.00.     For the three unsuccessful 

runs, the best subjective fitness values averaged 4.00, and the corresponding surrogate 

fitness values averaged 4.98.    The average surrogate fitness values across the entire 

population averaged 4.25 for the successful runs, and 4.87 for the unsuccessful runs.  For 

the happiness case, there was no correlation between the surrogate fitness values and the 

likelihood of convergence. 

 For the seven successful convergence cases for sadness, the best subjective fitness 

value averaged 8.43 across the final ten runs, ranging from 7 to 9.  The corresponding 

best surrogate fitness values averaged 4.89.  For the unsuccessful runs, the best subjective 

fitness values averaged 3.00, and the corresponding surrogate fitness values averaged 

4.18.    The average surrogate fitness values across the entire population averaged 4.72 

for the successful runs, and 3.94 for the unsuccessful runs.  For the sadness case, there 

was support for correlation between the surrogate fitness values and convergence rate.    

Anger had ten successful convergence cases.  The best subjective fitness value 

averaged 7.80 across the final ten runs, ranging from 7 to 9.  The corresponding best 

surrogate fitness values averaged 4.91.  The average surrogate fitness values across the 

entire population averaged 4.75. 
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Fear also had ten successful convergence cases.  The best subjective fitness value 

averaged 8.90 across the final ten runs, ranging from 7 to 10.  The corresponding best 

surrogate fitness values averaged 4.96.  The average surrogate fitness values across the 

entire population averaged 4.73. 

 For the nine successful convergence run for surprise, the best subjective fitness 

value averaged 7.33 across the final ten runs, ranging from 7 to 9.  The corresponding 

best surrogate fitness values averaged 4.91.   For the unsuccessful run, the best subjective 

fitness value was 2.00, and the corresponding surrogate fitness value was 4.94.    The 

average surrogate fitness values across the entire population averaged 4.67 for the 

successful runs, and 4.84 for the unsuccessful runs.  There was no correlation between 

the surrogate fitness values and the likelihood of convergence. 

 For the eight successful convergence cases for disgust, the best subjective fitness 

value averaged 8.25 across the final ten runs, ranging from 6 to 10.  The two 

corresponding best surrogate fitness values averaged 4.35.     For the unsuccessful runs, 

the best subjective fitness values averaged 4.00, and the corresponding surrogate fitness 

values averaged 4.24.    The average surrogate fitness values across the entire population 

averaged 4.03 for the both the successful and unsuccessful runs.  There was no 

correlation between the surrogate fitness values and the likelihood of convergence. 
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Table 14: Subjective and Surrogate Fitness Values 

Comparison of Subjective and Surrogate Fitness Values 
Average over ten runs for each target emotion 

Target 
Emotion 

Best 
Subjective 

Fitness 

Average 
Subjective 

Fitness 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Converged 

Happiness 6.14 3.42 5.00 4.25 Yes 
Happiness 4.00 3.12 4.98 4.87 No 
Sadness 8.43 5.14 4.89 4.72 Yes 
Sadness 3.00 1.50 4.18 3.94 No 
Anger 7.80 5.20 4.91 4.75 Yes 
Anger - - - - No 
Fear 8.90 6.00 4.96 4.73 Yes 
Fear - - - - No 

Surprise 7.33 4.00 4.91 4.67 Yes 
Surprise 2.00 1.12 4.94 4.84 No 
Disgust 8.25 4.25 4.35 4.03 Yes 
Disgust 4.00 1.69 4.24 4.03 No 

 

Neural Network Classification 

The final set of happiness training samples consisted of 1001 training samples and 

250 testing samples.    This neural network was trained until the mean square error (mse) 

reached .001.   In the final neural network trained, the testing samples resulted in a true 

positive rate of 0.940 and a false positive rate of 0.164 

Note that the true positive rate (TPR) is the fraction of true positives out of the 

positives, and the false positive rate (FPR) is the fraction of false positives out of the 

negatives.   
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    Table 15: Neural Network: Happiness 

Neural Network: Happiness 
Number Training Samples 1001 
Number Testing Samples 250 
False Positive 30 
False Negative 4 
True Negative 153 
True Positive 63 
True Positive Rate 0.940 
False Positive Rate 0.164 
Mean Square Error 0.001 

 

The final set of sadness training samples consisted of 930 training samples and 

232 testing samples.    This neural network was also trained until the mse reached .001.   

In the final neural network trained, the testing samples resulted in a true positive rate of 

0.880 and a false positive rate of 0.010.     

    Table 16: Neural Network: Sadness 

Neural Network: Sadness 
Number Training Samples 930 
Number Testing Samples 232 
False Positive 2 
False Negative 3 
True Negative 205 
True Positive 22 
True Positive Rate 0.880 
False Positive Rate 0.010 
Mean Square Error 0.001 

 

 
The final set of anger training samples consisted of 915 training samples and 228 

testing samples.    This neural network was trained until the mse reached .001.   In the 
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final neural network trained, the testing samples resulted in a true positive rate of 0.923 

and a false positive rate of 0.015.   

    Table 17: Neural Network: Anger 

Neural Network: Anger 
Number Training Samples 915 
Number Testing Samples 228 
False Positive 3 
False Negative 2 
True Negative 199 
True Positive 24 
True Positive Rate 0.923 
False Positive Rate 0.015 
Mean Square Error 0.001 

 

The final set of fear training samples consisted of 1005 training samples and 250 

testing samples.    This neural network was trained until the mse reached .001.   In the 

final neural network trained, the testing samples resulted in a true positive rate of 0.903 

and a false positive rate of 0.037.   

    Table 18: Neural Network: Fear 

Neural Network: Fear  
Number Training Samples 1005 
Number Testing Samples 250 
False Positive 8 
False Negative 3 
True Negative 211 
True Positive 28 
True Positive Rate 0.903 
False Positive Rate 0.037 
Mean Square Error 0.001 
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The final set of surprise training samples consisted of 994 training samples and 

248 testing samples.    This neural network was trained until the mse reached .001.   In 

the final neural network trained, the testing samples resulted in a true positive rate of 

0.917 and a false positive rate of 0.004.   

    Table 19: Neural Network: Surprise 

Neural Network: Surprise  
Number Training Samples 994 
Number Testing Samples 248 
False Positive 1 
False Negative 2 
True Negative 223 
True Positive 22 
True Positive Rate 0.917 
False Positive Rate 0.004 
Mean Square Error 0.001 

 

The final set of disgust training samples consisted of 754 training samples and 

188 testing samples.  In the final neural network trained, the testing samples resulted in a 

true positive rate of 0.778 and a false positive rate of 0.  

    Table 20: Neural Network: Disgust 

Neural Network: Disgust 
Number Training Samples 754 
Number Testing Samples 188 
False Positive 0 
False Negative 2 
True Negative 179 
True Positive 7 
True Positive Rate 0.778 
False Positive Rate 0.00 
Mean Square Error 0.001 
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 The true positive rate across all six NNs ranged from 0.778 to 0.940.   The 

happiness NN, which had the poorest false positive rate, also produced one of the lowest 

convergence rates.   It is notable that the happiness NN had a significantly higher 

percentage of positive training samples than the other NNs.     

 Table 21: Neural Networks: True Positive Rate/False Positive Rate 

Target 
Emotion 

True 
Positive 

Rate 

False 
Positive 

Rate 

Total 
Testing 
Samples 

Percent 
Positive 
Samples 

IGA 
Convergence 

Rate 
Happiness 0.940 0.164 250 37% 70% 
Sadness 0.880 0.010 232 10% 70% 
Anger 0.923 0.015 228 12% 100% 
Fear 0.903 0.037 250 14% 100% 
Surprise 0.917 0.004 248 9% 90% 
Disgust 0.778 0.000 188 4% 80% 

 

The following graph shows the trade-offs between TPR and FPR in ROC space. 

Points closest to the upper left corner should have the best predictive power. The primary 

outlier is the happiness NN which had a relatively high FPR and resulted in one of the 

lowest convergence rates.   The next points farthest from the upper left corner are from 

the sadness and disgust NNs, which also had the next two lowest convergence rates.  The 

three best points in ROC space were the anger, surprise, and fear NNs, which also had the 

three best convergence rates.  This suggests there may be a correlation between the 

quality of the NN and the convergence rate of the IGA.  
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          Figure 4: ROC Plots for Six NNs 

 

Genetic Algorithm Quality 

 The quality of the IGA system was measured with questionnaires administered to 

eight participants.   Individual results from each participant are included in Appendix C.   

The results in this section use the averages from the individual questionnaires. 

 The first question the participants were asked was to identify the facial expression 

being displayed.  The identification results varied widely across the emotions.  Happiness 
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was identified 13 out of 16 times for both the IGA and manual animations.   Fear, on the 

other hand, was only identified 6 and 7 times for the IGA and the manual animations, 

respectively.   The difference between the number of correct identifications for the IGA 

and manual animations was negligible for 4 of the 6 emotions, but the manual animations 

had a significant lead in the cases of anger and sadness.   The manual anger animations 

were identified correctly 56% of the time compared with 38% for the IGA animations.  

The manual sadness animations were identified correctly 38% of the time, compared with 

69% for the IGA animations.  Overall, when the numbers for all the emotions are 

combined, the IGA animations were correctly identified 53% of the time, and the manual 

animations were correctly identified 60% of the time.    

There were many patterns in the misidentifications.  For example, anger and 

disgust were often identified as each other.   Fear was often misidentified as surprise.  

There were also patterns in individual responses.  For example, participant 3 tended to 

see surprise, which comprised 47% of her misclassifications.     
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Table 22: Participant Responses: Incorrect Identifications per participant 

Emotion 1 2 3 4 5 6 7 8 
Anger Disgust 

Disgust 
Fear 
Happy 
Disgust 

Surprise Disgust 
Disgust 

Happy Fear 
None 

Happy 
Happy 
Fear 

Disgust 

Disgust Anger 
Sadness 

Surprise 
Anger 
Anger 

Surprise 
Anger 
Anger 

Anger 
Happy 

Anger Sadness 
None 
Surprise 

None 
Fear 
Fear 

Fear 
Surprise 

Fear Sadness 
Sadness 

Happy 
Surprise 

Surprise 
Surprise 
Surprise 
Happy 

Surprise 
Surprise 

 None 
None 
Surprise 

Sadness 
Anger 
Sadness 

None 
Surprise 
Anger 

Happiness  None 
Surprise 
Sadness 

Anger 
Surprise 
Surprise 

     

Sadness  Fear Anger 
Happy 

Happy 
Surprise 

None 
Fear 
None 

 Surprise 
Disgust 
Happy 

None 
None 
Fear 
Fear 

Surprise  Happy Anger 
Happy 

 Disgust Happy 
Sadness 

 None 
Fear 

 

 The next question the participants were asked was to rate the intensity of the 

emotion, with 1 being the least intense and 7 being the most intense.  Intensity was 

defined as the degree to which an emotion appears to be felt.  For example, a low 

intensity anger appears as irritation, whereas a high intensity anger appears as rage.  The 

average per emotion for the IGA animations ranged from 4.38 to 5.38.  For the manual 

animations, the rating for intensity ranged from 3.62 to 4.56.  In every case, the rating for 

the IGA animation was higher than for the corresponding manual animation.   In all but 

one case, the difference was less than 1 point.  The highest difference was the case of 

fear, which had a difference of 1.44.   When all emotions are taken together, the total 
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average intensity rating for the IGA animations was 4.84, and the average rating for the 

manual animations was 3.93.   

 The participants were next asked to rate the naturalness of the expression.  It was 

explained that an expression is natural if it is something people normally do.  Also, any 

artistic or technical faults in the animations should be considered unnatural.   In every 

emotion except sadness, the rating was higher for the IGA animations than the manual 

animations.    The difference was less than 1 point in every case.    Overall, the average 

rating for the IGA animations was 4.75, and the average for the manual animations was 

4.54.   

 The next rating that was requested was for sincerity.  This was described as a 

rating of 1 meaning the avatar appears to be faking or pretending, and 7 meaning the 

avatar appears to really mean the underlying emotion.  In 4 of the emotions, the IGA 

animations had a higher average rating, and in 2 of the emotions, the manual animations 

had the higher average rating.   In all but one emotion, the difference in average rating 

was less than 1 point.  Fear had the highest difference, with 5.44 and 4.06 for the IGA 

and manual animations, respectively.  When all emotions are totaled together, it shows 

that the overall average for the IGA animations was 4.98, and the average for the manual 

animations was 4.60. 

 Lastly, the participants were asked to rate the credibility of the animations.  

Credibility was defined as how believable or realistic the animation is.    For anger and 

disgust, the average ratings were identical for the IGA and manual animations.  Fear, 

happiness, and surprise had higher average rating for the IGA animations.   Sadness was 
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the only emotion where the manual animations were rated as being more credible.   When 

the totals for all emotions are combined, the overall average is 4.84 (69%) and 4.58 

(65%) for the IGA and manual animations, respectively.     

Table 23: Participant Responses: Totals per Emotion 

Total Participant Responses 
Category: 16 Presented Anger Disgust Fear Happiness Sadness Surprise 

IGA: Identification 6 7 6 13 6 13 
Manual: Identification 9 7 7 13 11 11 
IGA: Intensity 86 75 75 82 70 77 
Manual: Intensity 73 65 52 71 58 58 
IGA: Naturalness 75 77 80 76 63 85 
Manual: Naturalness 72 73 68 66 76 81 
IGA: Sincerity 77 76 87 80 68 90 
Manual: Sincerity 73 78 65 68 76 82 
IGA: Credibility 78 75 83 76 66 87 
Manual: Credibility 78 75 66 70 69 82 
 
 

Table 24: Participant Responses: Averages per Emotion  

Total Participant Averages 
Category Anger Disgust Fear Happiness Sadness Surprise 

IGA: Identification 0.38 0.44 0.38 0.81 0.38 0.81 
Manual: Identification 0.56 0.44 0.44 0.81 0.69 0.69 
IGA: Intensity 5.38 4.69 4.69 5.12 4.38 4.81 
Manual: Intensity 4.56 4.06 3.25 4.44 3.62 3.62 
IGA: Naturalness 4.69 4.81 5.00 4.75 3.94 5.31 
Manual: Naturalness 4.50 4.56 4.25 4.12 4.75 5.06 
IGA: Sincerity 4.81 4.75 5.44 5.00 4.25 5.62 
Manual: Sincerity 4.56 4.88 4.06 4.25 4.75 5.12 
IGA: Credibility 4.88 4.69 5.19 4.75 4.12 5.44 
Manual: Credibility 4.88 4.69 4.12 4.38 4.31 5.12 
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Table 25: Participant Responses: Totals of all emotions  

Total Participant Responses 
Category: 96 Presented Totals 

IGA: Identification 51 
Manual: Identification 58 
IGA: Intensity 465 
Manual: Intensity 377 
IGA: Naturalness 456 
Manual: Naturalness 436 
IGA: Sincerity 478 
Manual: Sincerity 442 
IGA: Credibility 465 
Manual: Credibility 440 

 

Table 26: Participant Responses: Averages of all emotions 

Total Participant Averages 
Category: 96 Presented Totals 

IGA: Identification 0.53 
Manual: Identification 0.60 
IGA: Intensity 4.84 
Manual: Intensity 3.93 
IGA: Naturalness 4.75 
Manual: Naturalness 4.54 
IGA: Sincerity 4.98 
Manual: Sincerity 4.60 
IGA: Credibility 4.84 
Manual: Credibility 4.58 

 

The participants were also shown an IGA animation and manual animation side 

by side and asked which one they preferred.  The IGA animation was randomly placed on 

the right or left to avoid any positional bias.  The participants knew the emotion being 

displayed but did not know which animation was generated by the IGA.  The preference 

results were quite skewed.  In the case of anger and disgust, the manual animations had a 
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significant preference.  In the case of fear, happiness, and surprise, the IGA animations 

had a significant preference.  In the case of sadness, the IGA animations had a slight 

preference.   

 When the totals are averaged across all of the emotions, the preference rates are 

close, with 54% of the IGA animations being preferred, and 46% of the manual 

animations being preferred. 

 

        Table 27: Participant Responses: Preferences Totals per Emotion  

IGA/Manual Emotion Preferred 
Out of 16 Total 

Average 

IGA Anger 6 0.38 
Manual Anger 10 0.62 

IGA Disgust 4 0.25 
Manual Disgust 12 0.75 

IGA Fear 12 0.75 
Manual Fear 4 0.25 

IGA Happiness 10 0.62 
Manual Happiness 6 0.38 

IGA Sadness 9 0.56 
Manual Sadness 7 0.44 

IGA Surprise 11 0.69 
Manual Surprise 6 0.31 

 

Table 28: Participant Responses: Preference Totals of all Emotions 

IGA/Manual Preferred 
Out of 96 Total 

Average 

IGA 52 0.54 
Manual 46 0.46 
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Findings 

In all of the experiments, the most significant factor in the successful convergence 

of the IGA was the quality of the first eight phenotypes presented for evaluation.   If there 

were at least two or three good phenotypes, it was likely that the overall quality of 

presented phenotypes would improve.  If there were no good phenotypes presented, the 

subjective fitness values offered no evolutionary pressure and the IGA was unlikely to 

present a good phenotype. 

It was discovered early in the testing phase that the surrogate fitness function had 

a significant effect on the success of the IGA.   The second set of experiments were not 

converging due to the NN always assigning a surrogate fitness value of 1.   It was 

reinforced later when corrupted data prevented the IGA from converging due to the NN 

always assigning a surrogate fitness value near 0.   In both cases, when the NN was fixed, 

the IGA was able to converge. 

Two sets of experiments were performed with the user evaluating 40% of the 

population, as described by Jin, Olhofer, and Sendhoff (2001).  In these experiments, 

which used a small population size of 20, the convergence rate was lower than when 

using a population of 100.   

 The final consistent set data was generated from six experiments of ten trials each.  

The average convergence rate was 85%, ranging from 70% to 100%.  The average user 

satisfaction ranged from 5.6 to 8.5.  There was a strong correlation between user 

satisfaction and convergence rate.   Happiness and sadness had both the lowest 
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convergence rates and the lowest user satisfaction rates.  Anger and fear had both the 

highest convergence rates and highest user satisfaction rates.   

 In a comparison of the NNs of the six target emotions, the NNs with the best 

TPR/FPR points in ROC space corresponded to the IGAs with the highest convergence 

rates.  Similarly, the NNs with the ROC points farthest from the upper left corner 

corresponded to the IGAs with the lowest convergence rates. 

 The results of the participant questionnaires show that the manual and IGA 

animations compare favorably.  In fact, the IGA animations had higher ratings on average 

than the manual animations in every category except identification.    The credibility 

ratings for the IGA animations were the same or higher than those for the manual 

animations for every emotion.   The preference ratings for the IGA animations were 

higher in 4 of the 6 emotions. 

Summary of Results 

Genetic Algorithm Effectiveness 

A set of experiments was conducted, systematically changing one variable and 

performing 10 runs of the IGA.  The results of each run were recorded in the form of 

whether the IGA converged and how satisfied the user was with the result.    The results 

of each run are included in Appendix A.   

Additionally, the best and average values of the subjective and surrogate fitness 

function were recorded.   The results of each run are included in Appendix B.   

The first experiment allowed all 39 AUs to be initialized and evolve, resulting in 

unrealistic phenotypes throughout the population.    
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The next set of experiments limited the number of AUs that could evolve, but the 

surrogate fitness values were 1 throughout the population.  The NNs were changed to 

accept all AUs as input instead of the subset of AUs associated with emotion.   

Three sets of experiments were conducted varying the number of random AUs for 

happiness.   When the number of random AUs was 7, no convergences occurred.   When 

the number of random AUs was 3, the variations were often barely visible.  In two sets of 

experiments using 3 and 5 random AUs, the results were (30%, 30%), (30%, 50%) where 

the first percentile listed reflects the experiment with 3 random AUs. 

Three sets of experiments were done varying the population size for happiness 

and sadness.  The remaining variables were kept the same for each pair of experiments, 

but differed among the three sets.   The convergence results of the experiments  were 

(30%, 30%), (30%, 50%), (40%, 80%), where the first number was for a population size 

20, and the second number was for a population size 100.  

Two sets of experiments were conducted varying the tournament size for sadness 

and anger.   Using a tournament size of 4 and 8, the results were (50%, 80%) in the first 

experiment.   Using a tournament size of 4, 6, and 8, the results were (70%, 60%, and 

100%).   

Fear and surprise were not converging at this point due to an error in the NN 

training data.  When the surrogate fitness value was 0 throughout the population, the IGA 

did not converge. 

The best convergence rates were found using a population of 100, number of 

random AUs of 5, and tournament size of 8.   Using these parameters, another set of six 
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experiments was conducted for a final consistent set of values.   The only variable for this 

final set of 60 runs was the target emotion and the quality of its associated neural 

network.   Convergence rates averaged 85%, ranging from 70% to 100%. User 

satisfaction ranged from 5.6 to 8.5 out of 10.    There was a strong correlation between 

the convergence rate and average user satisfaction. 

In 5 of the 6 trials in the final set of experiments, there was no correlation 

between surrogate fitness values and subjective fitness values or convergence rate.  

However, in the absence of a valid surrogate fitness function, the IGA failed to converge.   

 The TPR of the six NNs ranged from 0.778 to 0.940, and the FPR ranged from 

0.00 to 0.164.  There was some evidence suggesting a correlation between the TPR/FPR 

points in ROC space and IGA convergence rates.  The number of training samples ranged 

from 754 to 1005.   
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      Table 29: Summary of IGA Experiments 

Summary of Experimental Results 

(Variables Shaded Grey) 

Emotion Converge 
Rate 

Avg 
User 
Satis. 

Pop. 
Size 

Number 
Random 

AUs 

Tourn. 
Size 

Happiness 30% 2.6 20 5 4 
Happiness 30% 2.8 20 3 4 
Happiness 0% 1.0 100 7 4 
Happiness 50% 3.8 100 5 4 
Happiness 30% 2.9 100 3 4 
Sadness 70% 5.7 20 5 4 
Sadness 50% 4.9 100 5 4 
Sadness 80% 6.6 100 5 8 
Anger 70% 5.3 100 5 4 
Anger 60% 5.0 100 5 6 
Anger 100% 7.0 100 5 8 

Disgust 40% 7.25 20 5 8 
Disgust 80% 6.7 100 5 8 

Happiness 70% 5.6 100 5 8 
Sadness 70% 6.0 100 5 8 
Anger 100% 7.0 100 5 8 

Disgust 80% 6.7 100 5 8 
Fear 100% 8.5 100 5 8 

Surprise 90% 6.1 100 5 8 
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Genetic Algorithm Quality 

 It has been shown that experimental methods from the perceptual sciences allow 

defining and measuring the perceived realism of computer-generated images (Wallraven, 

Breidt, Cunningham, and Bulthoff (2005).   Specifically, the analysis of questionnaires 

administered to participants provides a quantitative method of measuring subjective data.     

The data show that identification rates were 53% for the IGA animations and 60% for the 

manual animations. The intensity, naturalness, sincerity, and credibility ratings were all 

slightly higher for the IGA animations than the manual animations overall.    The 

credibility ratings for the IGA animations were the same or higher than the manual 

animations for every emotion.  The credibility average was 69% for the IGA animations 

and 65% for the manual animations.  The results from the preference questionnaire 

showed a preference for the manual animations for anger and disgust, and a preference 

for the IGA animations for the remaining four emotions.   The preference average over all 

the emotions was 54% for the IGA animations and 46% for the manual animations.   

Table 30: Participant Responses: Averages for all Emotions 

Total Participant Averages 
Category: 96 Presented Totals 

IGA: Identification 0.53 
Manual: Identification 0.60 
IGA: Intensity 4.84 
Manual: Intensity 3.93 
IGA: Naturalness 4.75 
Manual: Naturalness 4.54 
IGA: Sincerity 4.98 
Manual: Sincerity 4.60 
IGA: Credibility 4.84 
Manual: Credibility 4.58 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

 Our research set out to determine whether an IGA could effectively generate 

realistic variations in facial expressions. Realistic facial animations are comprised of both 

a random component and a predictable component to expressions.   The roles of speaker 

and listener are the central focus of facial animation research.  The projects that 

incorporate emotion generally rely on static emotional expressions, the predictable 

component of expressions.   These components have been identified by FACS and 

studied extensively.   Our research produced random variations by varying randomly 

selected AUs that are not associated with either the roles of speaker and listener or with 

the AUs identified with a specific emotion.   The quality of the IGA system was 

measured by user satisfaction, percent of successful convergences, and evaluation by 

participants.     

There was a strong correlation with user satisfaction and convergence rate.   The 

graph below plots the convergence rate and user satisfaction.   It shows the results of 19 

experiments, with each experiment comprising ten runs.  The first six points in the graph 

show the final consistent set of experiments.  The user satisfaction rating reflected how 
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satisfied the user was with the best phenotype on a per-run basis.  User satisfaction 

ranged from 5.6 to 8.5 on a scale of 1 to 10 in the final consistent set of experiments, and 

the convergence rate ranged from 70% to 100%.    The quality of the IGA system from 

the perspective of the user was at least above average and was often quite favorable. 

               Figure 5: User Satisfaction and Convergence Rate 

 

Participants were asked to identify the presented emotion and rate the intensity, 

naturalness, sincerity, and credibility on a scale from 1 to 7.   Participants were not aware 

of which animations were manually generated and which ones were generated by the 

IGA system.  In general, the ratings for naturalness, sincerity, and credibility showed a 

strong correlation with one another.  The ratings for the IGA animations were slightly 

higher overall.  In fact, the credibility ratings for the IGA animations were the same or 

higher than the manual animations in every emotion except sadness, where the manual 

animations had a slight lead.   Thus, from the perspective of the participants, the 
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animations created by the IGA system were just as credible as the manually created 

animations.   

Figure 6: Participant Evaluation - Comparison of IGA animations 

 

Figure 7: Participant Evaluation - Comparison of manual animations 
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Figure 8: Participant Evaluation - Credibility Average Rating from all Participants 

 

  

Participants were also presented with 12 animations that showed both an IGA and 

a manual animation, and asked which one they preferred.  The participant did not know 

which one was manually generated and which one was generated by the IGA.   The 

results were quite mixed, with the IGA animations being preferred in 4 of the 6 emotions.  

Overall, the IGA animations were chosen 54% of the time.  This provides further support 

that the IGA system is able to evolve credible variations in facial expressions. 
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Figure 9: Participant Evaluation - IGA/Manual Preference 

 

 

 In addition to the results of the final consistent set of data, there were other 

interesting discoveries over the course of the project. 

 The NN training databases were initially populated with manually created face 

models over the course of several days.  When it became apparent that many more 

samples were required, a mechanism was built into the IGA system so that the individual 

face models of any of the eight presented animations could be stepped through and added 

to either the positive or negative training sets for the target emotion.    This transformed a 

task that would have taken many tedious hours into a task that only took minutes.  

Several 100’s of samples could be added in less than 30 minutes. This illustrates the 

potential power of a system that can automatically generate creative content.      

 Another aspect of our research was to determine how well a neural network could 

serve as a surrogate fitness function for evaluating the quality of the chromosomes.   
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Other research (Tokui, 2000;  Dahstedt, 2007) had used NNs in this capacity for evolving 

music, which is also very subjective.   During the course of the experiments, it was clear 

that the NNs had a significant influence on quality of IGA.  When the initial NNs were 

giving a value of 1 to all the genes, the IGA did not converge.  Later when the NNs were 

giving a value of 0 to all the genes, the IGA did not converge.   Over the course of ten 

runs in each of these failure scenarios the phenotypes presented for subjective evaluation 

were of very low quality.  This suggests that the ability of the NN to select the 8 best 

individuals for subjective fitness evaluation was a crucial part of the IGA system.    

The happiness, sadness, and disgust NNs had the lowest quality as measured by 

TPR and FPR, and had the corresponding lowest convergence rates for their IGAs.   The 

anger, surprise, and fear NNs had the best TPR and FPR points in ROC space, and had 

the highest convergence rates for their IGAs. This suggests there is a correlation between 

the quality of the NN and the convergence rate of the IGA.  It is also possible that the 

experiment samples of ten runs were too small to get a precise representation of the 

convergence rate.    This is possible because the random AUs were different in each run.  

The actual AUs selected for random evolving had a significant effect on the ability of the 

IGA to converge.  Some AUs were contraindicative of the target emotion, such as 

lowering the brows for surprise.   Other combinations were difficult for any target, such 

as when both eye left and eye right were evolving.   

One of the motivating factors behind using a surrogate fitness function was to 

increase the number of building blocks by using a large population.  It has been shown 

that there must be a sufficient number of building blocks in the initial population to arrive 
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at an optimal solution (Harik et. al., 1999).  Three experiments were conducted to 

compare the effects population size had on the IGA, showing a significant advantage for 

the larger population size.  This suggests that the smaller population size did not provide 

a sufficient number of building blocks.  It may also be that the smaller population GA 

performed poorly because the other GA parameters favored a larger population.  It has 

been shown that the performance of a GA is influenced by a complex interaction of its 

parameters (Grefenstette, 1986).    

 One of our research questions was how to incorporate the two fitness functions.   

In our research, the chromosomes retained both of the fitness functions.  If a chromosome 

were carried over into the next generation, it retained its subjective fitness value.  If a 

new chromosome were created from crossover or mutation, its subjective fitness value 

was reset to zero.   When selecting the mating population, a non-zero subjective fitness 

value was given priority over the surrogate fitness value.    Biasing the selection is the 

most common method described in the literature, but it had been shown with 

computationally expensive fitness functions that 40% of the population needed to be 

evaluated with the more precise fitness function for optimal convergence (Jin, Olhofer, 

and Sendhoff, 2001).    Our experiments yielded successful results evaluating only 8% of 

the population.   This may be due to the fact that a subjective fitness function represents 

an area rather than a point in the solution space.     It may also be that our solutions 

represented local optima rather than global optima. 

One of the interesting sets of experiments varied the tournament size.  When the 

tournament size was increased, the most fit chromosomes quickly spread throughout the 
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population and convergence results improved.   Due to issues of user fatigue, it was 

important for the user to perceive improved phenotypes within the first few generations.    

In the case of an IGA with a surrogate fitness function and a large population, it appears 

that the emphasis is better placed on exploitation rather than exploration.   It is possible 

that a more accurate surrogate fitness function would lessen this effect.  

Implications 

IGAs have been used to generate static 2-D and 3-D facial expressions.  They 

have also been used to create animated art, and animated arms and legs.  Our research has 

shown that it is possible to evolve credible variations in 3-D facial expressions for the six 

basic emotions.  Due to the extensive manual intervention required to produce animations 

in current practice, an automated system of generating creative content could be very 

useful.  As the speed and power of computer power improves, the demand for 3-D 

animations is likely to increase.  

Once an IGA system has been constructed, it can produce variations in 

expressions in a fraction of the time that an individual can produce manually.   Our 

research has shown that the participants liked the IGA animations as least as well as the 

manual animations and found them just as credible.   One can imagine how an IGA 

system could be improved to incorporate speech sequences and other types of expressions 

and tied into a production workflow to enhance productivity. 

 In our experiments, a large population size yielded significantly better results than 

a smaller one.   This is in contrast to the overwhelming majority of IGAs described in the 

literature, which use a small population and have the user evaluate each individual.  The 
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large population is possible because of the surrogate fitness function screening for the 

best individuals to be subjectively evaluated.  It is reasonable to believe that the more 

accurate the surrogate fitness function is, the more optimal the solution will be.   Our 

research has shown one configuration of an IGA system for the limited domain of six 

facial expressions.   While the NNs were an adequate surrogate fitness function, they 

were expensive to build and specific to each expression.   It is not clear whether NNs are 

the best surrogate fitness function for face models.  It is likely that our training sets were 

not optimal.   More research into predictive mechanisms for FACS-based face models 

would be extremely important to furthering the IGA capability in this domain. 

Recommendations 

Our research accomplished its primary objective, but in the process it raised many 

interesting questions.   

Most importantly, it is believed that the quality of the surrogate fitness function is 

critical to the success of the IGA.   It would be interesting to experiment with the 

composition of the NN training sets and the NN parameters, and run a series of 

experiments with each configuration.   These experiments could restrict the AUs that are 

allowed to evolve to be the same set rather than a random set for a more accurate 

comparison.    The evolving AUs should be adequately represented in the NN training 

sets.   With these restrictions in place, there should be relationships among the subjective 

and surrogate fitness values of the IGA, and the TPR/FPR values of the NN.   
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Along the same lines, it would also be interesting to compare other types of 

pattern classification systems serving as a surrogate fitness function.   Bayesian networks, 

decision trees, or one of the other variants of NNs are examples of possible alternatives.   

Our research showed that certain AUs could prevent the initial population from 

containing solutions of sufficient quality to rate above a minimal subjective fitness.   The 

surrogate fitness function alone is not precise enough to improve the population in such 

cases and the IGA fails to produce an acceptable solution..   There is a subset of AUs 

unique to each emotion that destroys the credibility of the expression unless their value is 

very low. Additionally, some AU combinations have this detrimental effect even though 

individually they are fine.  It is likely that the IGA would be more effective if the user 

were allowed to select which AUs were allowed to evolve for each run.  This would 

eliminate the detrimental AUs from the target emotion. Alternatively, the detrimental 

AUs could be identified and restricted to a small range without involving the user.  It 

would also be interesting if the IGA could learn over time which AUs were detrimental 

for the target emotion and incorporated into rules as was done by Dahstedt (2007) in the 

music domain. 

Speech-driven animation is an important focus in the facial animation research.  It 

would be interesting to specify a particular sequence of AUs to evolve the animation of a 

specific phrase.  This would be particular useful for incorporating the IGA into a rule-

based system such as that presented by Rosis, Pelachaud, Poggi, Carofiglio, and Carolis 

(2003).   In a rule-based system, the selected AUs could be provided by the rules rather 

than manually specified by the user.  
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 The GA parameters had a significant impact on the success of the IGA.  Our 

experiments varied population size and tournament size with definite winners for each.   

These experiments were far from exhaustive.   Different combinations of population size, 

tournament size, crossover rate, and mutation rate could reveal a more optimal 

configuration than the one we discovered.  

 Our IGA system creates a two-second animation.  To be useful, these animations 

would still have to be manually connected to a timeline.  It would be interesting to create 

the timeline automatically by evolving two separate populations, similar to the work done 

by Tokui (2000).   One population would combine face models into two-second clips, 

while the second population would combine the two-second clips into longer animation 

sequences.   Temporal data, such as transition and duration, might be a component of the 

second population.  The user might specify a phoneme sequence, where the first 

population evolves each individual phoneme, and the second population evolves the 

entire phrase.    

 

Summary 

A major focus of research in computer graphics is the modeling and animation of 

realistic human faces.   The film and game industries have a big influence on the demand 

for improved facial animation.  Embodied conversational agents are becoming popular as 

front ends to web sites, and as part of many computer applications such as virtual training 

environments, tutoring systems, storytelling systems, portable personal guides, and 
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entertainment systems (Mana and Pianesi, 2006). These types of applications will require 

realistic and believable graphical renderings of facial expressions. 

Modeling and animation of facial expressions is a very difficult task, requiring 

extensive manual manipulation by computer artists.  One of the primary research goals 

for facial animation is a system that creates realistic animation while reducing the amount 

of manual manipulation. 

There is a rich stream of research focused on enhancing computerized facial 

animation.  There is also a large body of literature investigating the use of interactive 

genetic algorithms in generating creative works.     Our research combines these two lines 

of research. 

Facial modeling and animation are often done with a polygonal mesh based on the 

pioneering work of Parke (Parke, 1972).   The vertices of the mesh are manipulated to 

create changes in the basic face, such as raising the brows. In one of the more popular 

animation techniques, a number of face models are created from the basic shape.  Then 

distinct model variations are selected and key-framed to points throughout the scene, 

interpolating from one model to the next. Due to its efficiency and simplicity, the 

blendshape approach is widely used for key framing facial animation (Li and Deng, 

2008). 

There is a large body of research using rule-based systems that focus on the roles 

of speaker and listener.   When these systems incorporate emotion, they suffer from  

static generation, with no variation in the given facial expression.   Ho and Huang (2004) 

developed a facial modeling system based on a polygonal mesh, using a GA that 
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transformed a 2-D image into a 3-D model.   But animation is a temporal sequence, and 

we can find better similarities in the music domain.  Tokui (2000) used a multilevel 

neural network as a surrogate fitness function to evolve music composition, evolving two 

populations separately, one for short pieces and the other for longer sequences of the 

short pieces.   Dahstedt (2007) represented music composition as recursive binary trees, 

and used an IGA that incorporated rules based on observation and statistics to serve as a 

surrogate fitness function.   

GAs are complex non-linear algorithms (Harik, et al., 1999).  They work by 

discovering, emphasizing, and recombining good building blocks of solutions in a highly 

parallel manner (Mitchell, 1998).  This is known as the schema theorem and is 

fundamental to the analysis of genetic algorithms.  There must be a sufficient number of 

building blocks in the initial population to arrive at an optimal solution.   Otherwise, the 

chances of the GA converging to a good solution are small (Harik et. al., 1999). 

The major problem of IGAs is human fatigue.  This is typically dealt with by 

using small populations.  Unfortunately, small populations suffer from the lack of genetic 

diversity, resulting in poor performance and a tendency to converge to a non-optimal 

solution.   To find solutions of high quality, the population size must be increased as 

much as possible (Harik, Cantu-Paz, Goldberg, & Miller, 1999).   One method that has 

been used to address this problem is a fitness prediction function, also called a surrogate 

function.  This algorithm uses with a large population, applies a predictive fitness 

function to all the individuals, and then shows a small subset of the most likely 

candidates to the user for evaluation (Takagi, 2001; Jin, 2005).   
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In the case of a high-dimensional input space and a limited number of samples, a 

neural network is often used as a surrogate fitness function (Jin, 2005). Neural networks 

are well suited for complex pattern classifications, and have been used to classify facial 

expressions in a number of research projects. By using NNs as a fitness approximation 

function, it is possible to use larger populations for an IGA. 

Our research project is an IGA system that evolves 3-D animation sequences of 

one of the six basic emotions.  The FACS-based genome maps directly to the blendshape 

controls.  A NN serves as a surrogate fitness function to enable the use of a large 

population. This is a unique approach to the important problem of automatic generation 

of facial animation. 

The IGA system presents the eight most-fit phenotypes to the user, who provides 

a subjective fitness value.   The subjective fitness values bias the selection process by 

giving the subjective fitness value priority over the surrogate fitness value. The 

chromosomes maintain both the surrogate and subjective fitness values into the next 

generation unless they are changed by crossover or mutation, at which point the 

subjective fitness value is reset to zero.  Tournament selection is used to select the mating 

pairs. 

The chromosome represents a sequence of n genes, each of which encodes a face 

model comprised of 39 blendshape controls.  The genes are sequenced so that the ith gene 

represents the ith face model in the animation sequence.  The number of face models does 

not evolve, but is a parameter that can be set by the user.   The NNs were trained to 
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evaluate a single facial expression.  Thus, the NN performs n evaluations on each 

chromosome, one evaluation for each face model.    

 Each experimental result reported is the average of ten runs of the IGA.   Several 

experiments were conducted to test various parameter settings.  Then, a final set of 

experiments was conducted with all six target emotions to get a final consistent set of 

data.   The final set of data was generated with a tournament size of 8,  crossover rate of 

0.8, mutation rate of 0.001, population size of 100, number of random AUs of 5, and 

number of genes of 5. 

Several experiments were conducted with a disabled surrogate fitness function 

and did not converge at all. This suggests that the ability of the NN to select the 8 best 

individuals for subjective fitness evaluation was a crucial part of the IGA system.  In the 

final consistent set of experiments, there was a correlation between the TPR/FPR points 

in ROC space of the NNs and the convergence rate of their corresponding IGAs.   

One of the motivating factors behind using a surrogate fitness function was to 

increase the number of building blocks by using a large population.  Three experiments 

were conducted to compare the effects population size had on the IGA, showing a 

significant advantage for the larger population size. This suggests that the smaller 

population size did not provide a sufficient number of building blocks. 

One of the interesting sets of experiments varied the tournament size.  When the 

tournament size was increased, the most fit chromosomes quickly spread throughout the 

population and convergence results improved.   Due to issues of user fatigue, it was 

important for the user to perceive improved phenotypes within the first few generations.    
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In the case of an IGA with a surrogate fitness function and a large population, it appears 

that the emphasis is better placed on exploitation rather than exploration.  

 In the final consistent set of experiments,  convergence rates ranged from 70% to 

100%, and user satisfaction ranged from 5.6 to 8.5 out of 10.    There was a strong 

correlation between the convergence rate and average user satisfaction.  The quality of 

the IGA system from the perspective of the user was at least above average and was often 

quite favorable. 

The data show that identification rates were 53% for the IGA animations and 60% 

for the manual animations. The intensity, naturalness, sincerity, and credibility ratings 

were all slightly higher for the IGA animations than for the manual animations overall.   

In fact, the credibility ratings for the IGA animations were the same or higher than the 

manual animations for every emotion.    The overall credibility averaged 69% for the 

IGA animations and 65% for the manual animations. The results from the preference 

questionnaire showed a preference for the manual animations for anger and disgust, and a 

preference for the IGA animations for the remaining four emotions.   The preference total 

average over all the emotions was 54% for the IGA animations and 46% for the manual 

animations.    The results of the questionnaires indicate that the IGA animations were as 

credible and liked as well as the manual animations.   

Once an IGA system has been constructed, it can produce variations in 

expressions in a fraction of the time that an individual can manually.   Our research has 

shown that an IGA is capable of generating credible variations in facial expressions.  It 
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has also provided evidence that a large population with a surrogate fitness function has an 

advantage over a small population.    

Our research has shown one configuration of an IGA system for the limited 

domain of six facial expressions.   While the NNs were an adequate surrogate fitness 

function, they were expensive to build and specific to each expression.   It is not clear 

whether NNs are the best surrogate fitness function for face models.  It is likely that our 

training sets were not optimal.   More research into predictive mechanisms for FACS-

based face models would be extremely important to furthering the IGA capability in this 

domain. 
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Appendix A:  Convergence Results for Each IGA Run 
 
 The convergence results of each run are included in this appendix.   The 

successful and failed convergence data were in separate files so their appearance in the 

charts is not necessarily in the order in which they occurred. 

Table 31: Convergence Results: Happiness Experiment 1 

Target: Happiness 
Population Size: 100 
Number Random AUs: 7 
Tournament Size: 4 
Number NN Training Samples: 709 

Converged User Satisfaction 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 

 

 

 



120 

 

 

 

 
Table 32: Convergence Results: Happiness Experiment 2 

Target: Happiness 
Population Size: 20 
Number Random AUs: 5 
Tournament Size: 4 
Number NN Training Samples: 709 

  Converged User Satisfaction 
Yes 6 
Yes 7 
Yes 6 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 

 

Table 33: Convergence Results: Happiness Experiment 3 

Target: Happiness 
Population Size: 20 
Number Random AUs: 3 
Tournament Size: 4 
Number NN Training Samples: 709 

Converged User Satisfaction 
Yes 6 
Yes 8 
Yes 6 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
No 1 
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Table 34: Convergence Results: Happiness Experiment 4 

Target: Happiness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 4 
Number NN Training Samples: 709 

Converged User Satisfaction 
Yes 6 
Yes 6 
Yes 7 
Yes 7 
Yes 7 
No 1 
No 1 
No 1 
No 1 
No 1 

 

Table 35: Convergence Results: Happiness Experiment 5 

Target: Happiness 
Population Size: 100 
Number Random AUs: 3 
Tournament Size: 4 
Number NN Training Samples: 709 

Converged User Satisfaction 
Yes 6 
Yes 7 
Yes 8 
No 4 
No 1 
No 4 
No 1 
No 1 
No 1 
No 1 
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Table 36: Convergence Results: Happiness Experiment 6 

Target: Happiness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 1001 

Converged User Satisfaction 
Yes 9 
Yes 6 
Yes 8 
Yes 7 
Yes 6 
Yes 7 
Yes 7 
No 1 
No 4 
No 1 

 

 

Table 37: Convergence Results: Sadness Experiment 1 

Target: Sadness 
Population Size: 20 
Number Random AUs: 5 
Tournament Size: 4 
Number NN Training Samples: 698 

Converged User Satisfaction 
Yes 8 
Yes 9 
Yes 7 
Yes 8 
Yes 7 
Yes 7 
Yes 6 
No 3 
No 1 
No 1 
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Table 38: Convergence Results: Sadness Experiment 2 

Target: Sadness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 4 
Number NN Training Samples: 698 

Converged User Satisfaction 
Yes 6 
Yes 9 
Yes 9 
Yes 8 
Yes 9 
No 4 
No 1 
No 1 
No 1 
No 1 

 

Table 39: Convergence Results: Sadness Experiment 3 

Target: Sadness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 698 

Converged User Satisfaction 
Yes 8 
Yes 6 
Yes 7 
Yes 9 
Yes 6 
Yes 9 
Yes 8 
Yes 9 
No 3 
No 1 
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Table 40: Convergence Results: Sadness Experiment 4 

Target: Sadness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 930 

Converged User Satisfaction 
Yes 9 
Yes 9 
Yes 7 
Yes 9 
Yes 9 
Yes 4 
Yes 7 
No 1 
No 1 
No 1 

 
 
 
Table 41: Convergence Results: Anger Experiment 1 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 731 

Converged User Satisfaction 
Yes 9 
Yes 8 
Yes 7 
Yes 8 
Yes 8 
Yes 7 
Yes 9 
Yes 7 
Yes 6 

No 1 
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Table 42: Convergence Results: Anger Experiment 2 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 6 
Number NN Training Samples: 731 

Converged User Satisfaction 
Yes 6 
Yes 8 
Yes 7 
Yes 6 
Yes 7 
Yes 7 
No 5 
No 2 
No 1 
No 1 

 

 

Table 43: Convergence Results: Anger Experiment 3 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 4 
Number NN Training Samples: 731 

Converged User Satisfaction 
Yes 6 
Yes 7 
Yes 6 
Yes 7 
Yes 7 
Yes 7 
Yes 8 
No 1 
No 1 
No 3 
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Table 44: Convergence Results: Anger Experiment 4 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 915 

Converged User Satisfaction 
Yes 8 
Yes 8 
Yes 7 
Yes 8 
Yes 7 
Yes 7 
Yes 6 
Yes 7 
Yes 6 
Yes 6 

 
 
 
Table 45: Convergence Results: Fear Experiment 1 

Target: Fear 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  1005 

Converged User Satisfaction 
Yes 8 
Yes 8 
Yes 9 
Yes 9 
Yes 9 
Yes 9 
Yes 6 
Yes 9 
Yes 9 
Yes 9 
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Table 46: Convergence Results: Surprise Experiment 1 

Target: Surprise 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  1008 

Converged User Satisfaction 
Yes 8 
Yes 9 
Yes 8 
Yes 8 
Yes 6 
Yes 6 
Yes 9 
Yes 8 
Yes 1 
No 4 

 

 

Table 47: Convergence Results: Disgust Experiment 1 

Target: Disgust 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  754 

Converged User Satisfaction 
Yes 8 
Yes 9 
Yes 8 
Yes 8 
Yes 6 
Yes 6 
Yes 9 
Yes 8 
No 1 
No 4 
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Appendix B: Surrogate and Subjective Fitness Values 

 This appendix is a compilation of the subjective and surrogate fitness values for 

each run in the final consistent set of experiments.   

 

Table 48: Subjective and Surrogate Fitness: Happiness 

Target: Happiness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 1001 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

9 4.0 3.57 5.00 4.99 0.01 2 
6 3.0 2.15 4.99 4.96 0.03 4 
8 5.0 2.00 4.99 4.79 0.12 3 
7 3.0 2.92 5.00 5.00 0.00 4 
7 1.0 2.12 5.00 5.00 0.00 4 
8 4.0 2.83 5.00 5.00 0.00 4 
7 4.0 2.52 5.00 4.97 0.31 4 
1 1.0 0.00 5.00 4.93 0.04 5 
5 2.75 1.85 4.93 4.69 0.08 5 
6 1.62 1.65 5.00 5.00 0.00 4 
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Table 49: Subjective and Surrogate Fitness: Sadness 

Target: Sadness 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 930 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

9 7.0 2.35 4.95 4.21 0.61 1 
9 6.0 1.58 4.87 4.83 0.02 3 
9 4.0 2.57 4.95 4.93 0.02 3 
9 6.0 3.43 4.84 4.53 0.38 3 
9 6.0 2.81 4.93 4.88 0.04 3 
7 3.0 2.92 4.75 4.75 0.00 10 
7 4.0 2.45 4.95 4.92 0.01 3 
7 2.5 2.60 4.76 4.75 0.09 9 
1 1.0 0.00 4.85 4.83 0.01 5 
1 1.0 0.00 2.96 2.23 0.25 5 

 

Table 50: Subjective and Surrogate Fitness: Anger 

Target: Anger 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples: 915 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

8 7 0.94 4.90 4.74 0.12 3 
8 4 3.12 4.95 4.85 0.09 4 
9 3 3.35 4.98 4.84 0.24 3 
8 6 2.09 5.00 4.98 0.02 3 
7 3 2.76 4.92 4.91 0.05 5 
8 6 1.54 4.95 4.85 0.07 3 
7 5 1.17 4.89 4.59 0.36 3 
8 7 0.79 5.00 4.99 0.01 3 
8 6 1.32 5.00 4.99 0.01 4 
7 5 1.66 4.51 3.76 0.54 3 
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Table 51: Subjective and Surrogate Fitness: Fear 

Target: Fear 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  1005 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

9 5 2.98 4.99 4.86 0.43 3 
9 4 3.08 5.00 4.98 0.01 3 
10 8 1.27 4.88 3.76 0.95 2 
8 6 2.37 4.88 4.69 0.15 4 
9 6 3.30 5.00 5.00 0.01 4 
9 5 3.06 4.95 4.79 0.15 3 
7 3 2.65 4.96 4.90 0.07 5 
9 7 2.50 4.99 4.76 0.25 2 
10 9 0.35 4.99 4.81 0.31 2 
9 7 1.17 5.00 4.98 0.02 3 

 

Table 52: Subjective and Surrogate Fitness: Surprise 

Target: Surprise 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  1008 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

8 3 2.69 4.94 4.92 0.01 3 
9 6 2.29 4.94 4.08 0.65 2 
7 5 1.87 4.70 3.59 0.52 3 
7 3 1.94 4.95 4.94 0.00 6 
7 4 1.77 4.90 4.90 0.01 4 
7 3 2.92 4.95 4.90 0.13 4 
7 3 2.60 4.92 4.88 0.02 5 
8 6 2.09 4.90 4.88 0.02 3 
6 3 1.77 4.95 4.94 0.01 3 
2 1.12 0.33 4.94 4.84 0.09 2 
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Table 53: Subjective and Surrogate Fitness: Disgust 

Target: Disgust 
Population Size: 100 
Number Random AUs: 5 
Tournament Size: 8 
Number NN Training Samples:  754 
Best 

Subjective 
Fitness 

Average 
Subjective 

Fitness 

Subjective 
Standard 
Deviation 

Best 
Surrogate 

Fitness 

Average 
Surrogate 

Fitness 

Surrogate 
Standard 
Deviation 

Num 
Runs 

9 6 2.37 4.44 4.39 0.03 4 
10 6 3.64 4.35 4.01 0.24 3 
8 2 3.12 4.28 3.65 0.46 3 
9 5 3.12 4.40 4.33 0.05 3 
7 3 2.81 4.31 3.81 0.45 4 
6 4 1.80 4.25 4.17 0.11 4 
9 5 2.60 4.36 3.63 0.56 2 
8 3 3.10 4.38 4.28 0.06 5 
1 1 0.00 4.19 3.81 0.14 4 
7 2.38 2.69 4.29 4.24 0.03 5 
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Appendix C: Participant Evaluations 

 This appendix includes the responses from each of the participants for the first set 

of 24 animations. 

 

Table 54: Participant 1 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 7 6 7 6 09:12:32 
2 Manual 5 5 4 6 7 6 09:13:01 
3 GA 3 3 4 6 7 5 09:14:16 
4 Manual 1 2 4 6 7 6 09:14:38 
5 Manual 5 5 2 6 7 6 09:14:57 
6 GA 2 2 6 6 6 6 09:15:11 
7 GA 6 6 4 7 7 7 09:15:24 
8 Manual 2 1 5 6 6 6 09:15:50 
9 Manual 6 6 3 7 7 7 09:16:05 
10 GA 2 2 5 6 6 5 09:16:30 
11 Manual 1 2 5 5 5 5 09:17:13 
12 GA 4 4 6 6 6 6 09:17:28 
13 GA 2 5 2 6 6 6 09:17:38 
14 Manual 5 5 6 6 6 7 09:17:56 
15 Manual 6 6 2 6 6 7 09:18:09 
16 GA 3 3 4 6 6 7 09:18:27 
17 GA 4 4 6 6 7 7 09:18:39 
18 GA 1 2 6 6 7 7 09:18:50 
19 GA 3 5 3 6 7 6 09:19:07 
20 Manual 4 4 7 6 7 7 09:19:17 
21 Manual 4 4 2 5 7 7 09:19:42 
22 GA 3 5 3 5 6 6 09:19:59 
23 Manual 6 6 6 6 7 7 09:20:12 
24 GA 5 5 6 6 7 7 09:20:30 
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Table 55: Participant 2 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 4 3 3 4 15:15:40 
2 Manual 5 5 5 4 4 4 15:16:25 
3 GA 3 3 4 3 4 4 15:16:47 
4 Manual 1 3 4 3 4 4 15:17:08 
5 Manual 5 3 4 3 4 4 15:17:36 
6 GA 2 6 4 4 5 4 15:17:55 
7 GA 6 6 4 4 5 4 15:18:02 
8 Manual 2 2 5 4 5 4 15:18:17 
9 Manual 6 4 5 5 4 5 15:18:34 
10 GA 2 1 4 3 4 4 15:19:00 
11 Manual 1 4 5 3 3 4 15:19:34 
12 GA 4 0 3 3 2 4 15:19:50 
13 GA 2 1 3 4 5 3 15:20:10 
14 Manual 5 5 3 5 3 4 15:20:43 
15 Manual 6 6 5 6 7 5 15:21:15 
16 GA 3 4 4 3 3 3 15:21:40 
17 GA 4 4 4 5 6 5 15:22:03 
18 GA 1 2 4 5 6 5 15:23:18 
19 GA 3 3 4 5 2 5 15:23:30 
20 Manual 4 6 4 5 5 5 15:23:40 
21 Manual 4 5 5 4 4 4 15:23:59 
22 GA 3 6 5 3 5 6 15:24:22 
23 Manual 6 6 5 5 7 6 15:25:07 
24 GA 5 5 5 5 7 6 15:25:14 
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Table 56: Participant 3 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 4 4 7 7 15:31:46 
2 Manual 5 5 4 7 7 3 15:33:37 
3 GA 3 6 5 7 7 6 15:34:38 
4 Manual 1 1 6 7 5 7 15:35:29 
5 Manual 5 5 3 3 1 1 15:36:04 
6 GA 2 6 6 7 7 7 15:36:43 
7 GA 6 6 2 2 2 2 15:37:27 
8 Manual 2 1 6 7 7 7 15:37:54 
9 Manual 6 1 7 7 7 7 15:38:34 
10 GA 2 2 7 7 7 7 15:38:53 
11 Manual 1 1 7 7 7 7 15:39:16 
12 GA 4 1 2 3 2 2 15:39:45 
13 GA 2 1 7 7 7 7 15:40:03 
14 Manual 5 1 1 1 3 3 15:40:36 
15 Manual 6 6 1 5 5 5 15:41:16 
16 GA 3 6 7 7 7 7 15:41:49 
17 GA 4 6 7 1 1 1 15:42:28 
18 GA 1 6 7 7 7 7 15::42:58 
19 GA 3 6 3 3 2 1 15:43:35 
20 Manual 4 6 2 1 2 1 15:43:57 
21 Manual 4 4 1 1 1 3 15:44:23 
22 GA 3 4 5 5 3 4 15:45:03 
23 Manual 6 4 6 6 6 6 15:45:28 
24 GA 5 4 6 1 1 1 15:45:51 
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Table 57: Participant 4 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 6 5 4 7 15:54:02 
2 Manual 5 5 5 4 4 4 15:55:25 
3 GA 3 6 5 5 5 4 15:56:37 
4 Manual 1 2 4 3 4 2 15:57:25 
5 Manual 5 5 5 5 6 4 15:58:32 
6 GA 2 1 6 6 6 4 15:58:32 
7 GA 6 6 5 5 6 4 16:00:21 
8 Manual 2 2 3 2 2 2 16:01:21 
9 Manual 6 6 4 6 6 6 16:01:55 
10 GA 2 2 5 5 6 6 16:02:18 
11 Manual 1 1 5 5 5 5 16:02:52 
12 GA 4 4 5 3 5 2 16:03:29 
13 GA 2 4 5 5 6 6 16:03:57 
14 Manual 5 4 5 6 6 6 16:04:19 
15 Manual 6 6 4 7 7 7 16:04:45 
16 GA 3 6 4 4 5 5 16:05:11 
17 GA 4 4 4 6 6 5 16:06:00 
18 GA 1 2 7 4 6 5 16:06:33 
19 GA 3 3 3 3 3 3 16:07:02 
20 Manual 4 4 3 5 5 5 16:07:31 
21 Manual 4 4 2 6 6 6 16:07:52 
22 GA 3 3 4 4 4 4 16:08:15 
23 Manual 6 6 4 6 5 6 16:08:51 
24 GA 5 6 2 4 4 3 16:09:16 
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Table 58: Participant 5 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 3 1 1 2 16:18:48 
2 Manual 5 5 3 5 5 6 16:19:27 
3 GA 3 3 6 5 6 6 16:20:00 
4 Manual 1 1 3 5 4 5 16:21:05 
5 Manual 5 0 1 2 2 2 16:21:58 
6 GA 2 2 6 2 3 5 16:22:31 
7 GA 6 6 4 4 4 6 16:23:21 
8 Manual 2 2 3 3 3 3 16:24:08 
9 Manual 6 2 3 3 3 3 16:24:09 
10 GA 2 1 1 2 1 2 16:25:07 
11 Manual 1 4 3 1 1 1 16:25:35 
12 GA 4 4 6 6 6 6 16:26:11 
13 GA 2 2 1 2 3 3 16:26:56 
14 Manual 5 3 4 5 6 6 16:27:25 
15 Manual 6 6 1 2 3 4 16:27:55 
16 GA 3 3 4 3 4 4 16:28:22 
17 GA 4 4 6 3 4 3 16:28:51 
18 GA 1 1 6 5 4 5 16:29:12 
19 GA 3 3 2 5 5 5 16:29:57 
20 Manual 4 4 5 2 2 2 16:30:31 
21 Manual 4 4 3 3 3 4 16:31:02 
22 GA 3 3 1 4 5 5 16:31:23 
23 Manual 6 6 4 5 6 6 16:31:45 
24 GA 5 0 3 3 4 3 16:32:33 
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Table 59: Participant 6 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 5 7 6 6 16:39:05 
2 Manual 5 5 5 5 6 6 16:40:16 
3 GA 3 3 6 5 6 6 16:41:20 
4 Manual 1 3 6 6 6 6 16:41:55 
5 Manual 5 5 6 6 7 7 16:42:54 
6 GA 2 5 6 6 6 6 16:43:29 
7 GA 6 6 6 6 6 6 16:43:53 
8 Manual 2 2 6 6 6 6 16:44:16 
9 Manual 6 4 6 6 6 6 16:44:37 
10 GA 2 0 2 2 2 2 16:45:25 
11 Manual 1 0 2 2 2 2 16:45:49 
12 GA 4 4 5 5 5 5 16:46:16 
13 GA 2 6 5 5 5 5 16:46:58 
14 Manual 5 5 5 5 5 5 16:47:19 
15 Manual 6 5 5 5 5 5 16:47:43 
16 GA 3 0 5 5 5 5 16:48:00 
17 GA 4 4 5 6 6 6 16:48:26 
18 GA 1 1 6 6 6 6 16:48:58 
19 GA 3 0 2 2 2 2 16:49:49 
20 Manual 4 4 5 5 5 5 16:50:13 
21 Manual 4 4 6 6 6 6 16:50:41 
22 GA 3 6 6 6 6 6 16:51:00 
23 Manual 6 6 7 7 7 7 16:51:23 
24 GA 5 5 7 7 7 7 16:51:41 
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Table 60: Participant 7 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 4 5 3 3 4 16:58:20 
2 Manual 5 6 4 7 7 7 16:59:01 
3 GA 3 5 4 7 7 7 16:59:42 
4 Manual 1 1 3 5 5 6 17:00:25 
5 Manual 5 5 2 6 4 4 17:01:27 
6 GA 2 2 7 7 7 7 17:02:01 
7 GA 6 6 5 7 7 7 17:02:38 
8 Manual 2 0 6 7 7 7 17:03:35 
9 Manual 6 6 5 7 7 7 17:04:02 
10 GA 2 3 2 7 3 4 17:04:59 
11 Manual 1 4 5 4 3 4 17:05:33 
12 GA 4 4 5 7 7 7 17:06:03 
13 GA 2 3 1 2 2 3 17:06:59 
14 Manual 5 2 2 2 2 3 17:07:24 
15 Manual 6 6 1 2 2 2 17:07:51 
16 GA 3 1 3 6 6 6 17:08:31 
17 GA 4 4 7 7 7 7 17:09:06 
18 GA 1 3 7 7 7 7 17:09:32 
19 GA 3 3 3 6 6 6 17:10:13 
20 Manual 4 4 5 6 6 6 17:10:50 
21 Manual 4 4 5 6 6 6 17:11:13 
22 GA 3 5 3 6 4 4 17:11:49 
23 Manual 6 6 7 7 7 7 17:12:06 
24 GA 5 4 7 1 1 1 17:12:38 
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Table 61: Participant 8 Responses 

Anim. 
Num. 

Origin 
(GA or 

Manual) 

Target 
Emotion 

Identified 
Emotion 

 

Inten. 
(1-7) 

Natur. 
(1-7) 

Sinc. 
(1-7) 

Cred. 
(1-7) 

Time 

1 Manual 1 1 5 5 4 3 17:22:15 
2 Manual 5 0 3 5 3 3 17:23:14 
3 GA 3 0 5 4 4 3 17:23:55 
4 Manual 1 2 4 3 3 3 17:24:32 
5 Manual 5 0 2 2 2 2 17:25:22 
6 GA 2 3 5 3 3 2 17:26:01 
7 GA 6 0 3 3 3 2 17:26:42 
8 Manual 2 2 5 4 4 4 17:27:20 
9 Manual 6 6 3 4 4 4 17:28:10 
10 GA 2 6 3 4 4 4 17:28:27 
11 Manual 1 1 5 4 5 5 17:28:57 
12 GA 4 4 5 5 5 5 17:29:49 
13 GA 2 2 2 3 4 3 17:30:33 
14 Manual 5 3 3 3 3 2 17:31:07 
15 Manual 6 6 3 3 3 2 17:31:28 
16 GA 3 6 5 4 5 5 17:31:53 
17 GA 4 4 6 4 5 5 17:32:21 
18 GA 1 1 6 4 3 3 17:32:43 
19 GA 3 1 3 3 3 2 17:33:10 
20 Manual 4 4 7 4 2 2 17:33:46 
21 Manual 4 4 7 3 2 2 17:34:10 
22 GA 3 3 2 2 2 1 17:34:42 
23 Manual 6 3 5 5 5 4 17:35:09 
24 GA 5 3 5 3 3 2 17:35:41 
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Appendix D:  Screenshots of animations 

This appendix includes snapshots of the two-second animation clips that were 

shown to participants for evaluation.  An example is shown for each emotional 

expression generated both manually and by the IGA. 
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Figure 10: Sadness - Manually Generated 

 
 
 

Figure 11: Sadness - IGA Generated 
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Figure 12: Surprise - Manually Generated 

 
 
Figure 13: Surprise - IGA Generated 
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Figure 14: Disgust - Manually Generated 

 

Figure 15: Disgust - IGA Generated 
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Figure 16: Fear - Manually Generated 

 

Figure 17: Fear - IGA Generated 
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Figure 18: Happy - Manually Generated 

 

Figure 19: Happy - IGA Generated
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Figure 20: Anger - Manually Generated 

 

Figure 21: Anger - IGA Generated 
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Appendix E: Screenshots of Animation Pairs 

 This appendix contains screenshots taken from the two-second animation clips 

that were shown for comparison to the participants.  One example for each emotion is 

included. 

Figure 22: Happy Comparison 
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Figure 23: Anger Comparison 

 

Figure 24: Disgust Comparison 
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Figure 25: Sad Comparison 

 

Figure 26: Fear Comparison 
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Figure 27: Surprise Comparison 

 


